

KYOTO UNIVERSITY MT SYSTEM Description for IWSLT 2017

<u>Raj Dabre¹</u>, Fabien Cromieres², Sadao Kurohashi¹

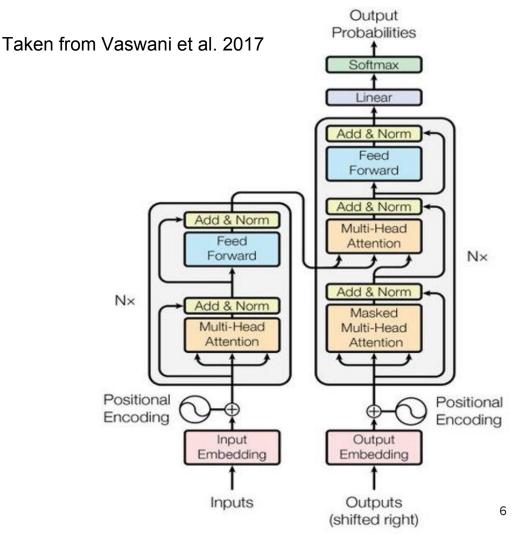
¹Graduate School of Informatics, Kyoto University, Kyoto, Japan ²Japan Science and Technology Agency, Saitama, Japan 14-12-2017 IWSLT 2017

QR CODE TO ACCESS SLIDES

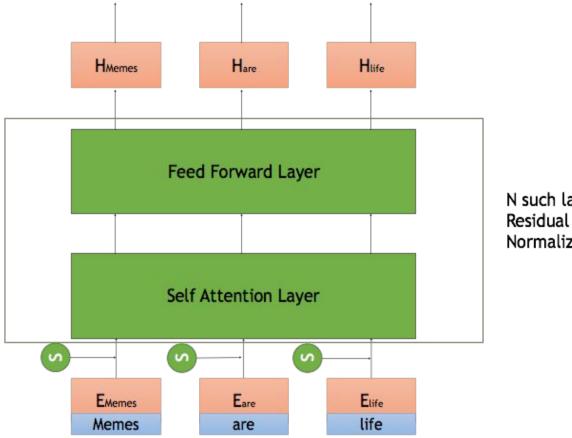
FLOW OF THIS TALK

- Overview
 - Multilingual Task
 - AIAYN
- Our approaches
 - \circ Using NMT
 - Using SMT (for internal evaluation)
- Experimental Settings
- Results and Observations
- Conclusion

MULTILINGUAL TASK

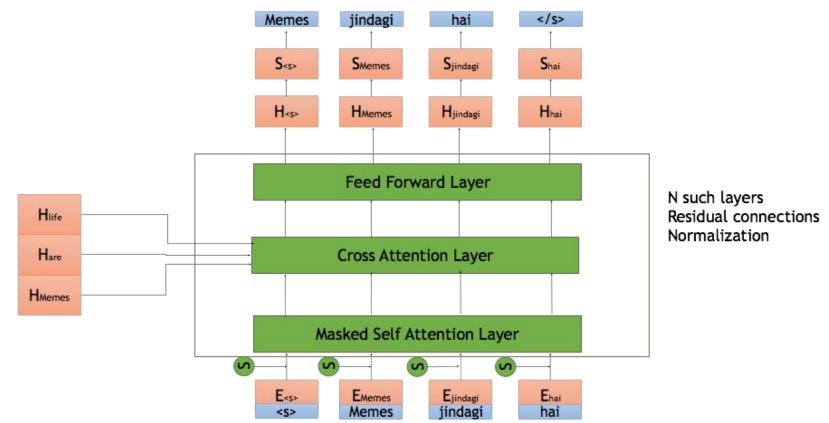

- 5 languages
 - German, Dutch, Romanian, Italian and English
 - \circ $\,$ 3 Germanic and 2 Romance $\,$
- Objective: One multilingual model for all 5 languages (20 directions)
- Non zero-shot setting
 - Use all data (20 parallel corpora)
- Zero-shot setting
 - All data except for German-Dutch, Dutch-German, Romanian-Italian and Italian-Romanian (16 parallel corpora)

PREFERRED PARADIGM: NON-RECURRENT NMT

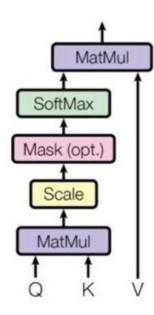

- Why NMT?
 - Easier to develop end-to-end multilingual models with parameter sharing (Johnson et al., 2016)
 - NMT as a black box is good enough
- Why Non-Recurrent?
 - Faster to train (multilingual model training takes time as it is)
 - Known to perform better than recurrent models (Vaswani et al., 2017)

ATTENTION IS <mark>ALL YOU</mark> NEED (AIAYN)

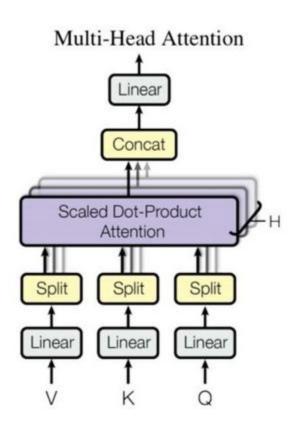
- Faster training
 - \circ Feed Forward Layers
 - Positional Encoding
 - Residual connections
 - Batch Normalization
- Better attention mechanism
 - Multi-head
 - \circ Self and cross
- Adam with decay



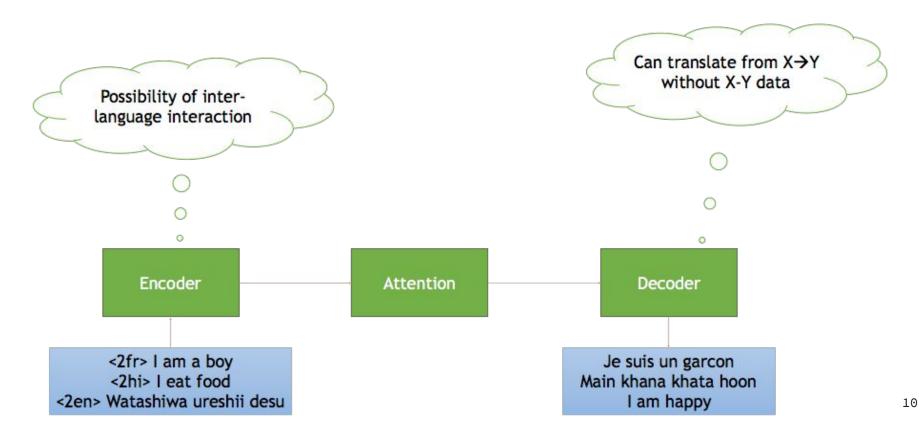
ENCODER


N such layers Residual connections Normalization

DECODER



ATTENTION


Scaled Dot-Product Attention

Taken from Vaswani et al. 2017

OUR APPROACH: MLNMT USING ARTIFICIAL TOKENS

MULTILINGUAL PHRASE BASED SMT

- Hacky Approach
- Only works for non-zero shot conditions
- **<u>Technique</u>**: For each language pair append "#tgt" to each source token
- Example:
 - Original: "I am a boy" --> "Watashi wa otokonoko desu"
 - Modified: "I#ja am#ja a#ja boy#ja" --> "Watashi wa otokonoko desu"
- **<u>Outcome</u>**: Single phrase table with multiple language directions
- <u>Working:</u> Token "#tgt" helps match phrase pairs for exactly one language pair

EXPERIMENTAL SETTINGS

- Corpora
 - \circ 20 way corpora provided by organizers (~200K sentences per direction)
 - dev2010 and tst2010 for internal evaluation
 - \circ tst2017 for official evaluation
- Generic Preprocessing
 - \circ XML to Moses format
 - Tokenization (using Moses tokenizer)
 - Truecasing (using Moses truecaser)
- Specific Preprocessing For NMT:
 - Prepending the "<2xx>" token to source sentences for all corpora
- Specific Preprocessing For PBSMT:
 - Appending "#xx" token to all source word tokens for all corpora
 - Byte Pair Encoding
 - Not needed for NMT: AIAYN has in built sub-word encoder

PBSMT SETTINGS

- Moses toolkit for training, tuning and testing
- Sub-word vocabulary size: 32000
- Language model: 7-gram KenLM
- Default settings for alignment and phrase extraction, tuning and testing.

NMT SETTINGS

- Google's implementation of AIAYN
 - o https://github.com/tensorflow/tensor2tensor
- Sub-word vocabulary size of 32000 (managed by EMS)
- Embedding and output layer sizes: 512
- Feed forward hidden layer size: 2018
- Adam optimizer with weight decay (Noam LR Decay)

 16000 of learning rate warmup before decay
- Beam search decoding:
 - Beam width of size 4
 - Alpha of 0.6 (for decoded sequence length penalty)
- Iterations: 400000 (~10 epochs)
- Data parallelism: 5 GPUs (3-4 days for convergence)

INTERNAL	EVALUATION
(TST2010)	

- NMT is inherently superior to PBSMT
- But needs 3-4 times longer training time
- PBSMT does not really allow for languages to interact
 - No parameters are shared in reality
 - Phrase table sharing is more of a hack

Upper score is SMT Lower score is NMT					
L1/L2	de	en	it	nl	ro
de	aller (*s	29.63	17.57	23.51	14.49
	-	34.98	21.37	23.69	18.96
012	21.70		24.04	27.25	21.38
en	27.81	-	29.07	30.91	26.65
it	15.88	28.89		18.48	19.46
	21.37	34.58	-	21.83	20.72
nl	21.57	34.79	18.84		15.99
	24.45	38.86	23.02	-	20.68
ro	15.96	31.10	22.65	18.57	- 850
	21.81	37.10	24.07	23.01	

Non Zero Shot

- <u>Surprise</u>: Zero-shot results are almost as good as non-zero shot results
- <u>Analysis</u>: Extracted
 5-lingual corpora from the
 20 parallel corpora
- **Observation:** 150k sentences are 5 lingual
 - 60% of corpus
- <u>Conclusion</u>: Missing parallel sentences between Italian and Romanian and Dutch and German are remedied by indirect translations from other languages

NON ZEIO SHOL						
L1/L2	de	en	it	nl	ro	
de	-	26.45	17.54	19.64	16.27	
en	23.25	-	30.79	28.80	24.66	
it	19.10	34.73	-	22.32	20.60	
nl	20.27	<u>30.49</u>	19.86		17.65	
ro	17.94	29.58	21.89	20.24	-	

Zero Shot

L1/L2	de	en	it	nl	ro
de	-	27.08	17.67	20.31	16.08
en	23.63	-	30.99	30.18	24.49
it	19.20	35.28	-	22.76	20.37
nl	19.68	<u>30.63</u>	20.74		17.74
ro	18.40	30.23	21.85	20.47	-

• <u>Truly zero-shot?</u>

HOW DOES MLNMT STACK AGAINST BILINGUAL MODELS?

• Dutch-German

- Bilingual: 19.5
- Non zero shot: 20.27
- Zero shot: 19.68

• Romanian-Italian

- Bilingual: 23.14
- \circ Non zero shot: 21.89
- Zero shot: 21.85
- More or less comparable performance
- Bilingual models required a few hours of training on 5 GPUs

CONCLUSIONS AND FUTURE WORK

- Set foundations for low resource multilingual NMT baselines
- AIAYN is fast and effective
 - \circ $\,$ Better than PBSMT setting we tried $\,$
- Zero-shot performance is almost as good or better then non zero-shot performance
 - Suspicion: Setting is not truly zero shot
- Future work
 - Train more robust models (dropout, annealing, checkpoint averaging)
 - \circ $\,$ Try out stricter zero-shot conditions
 - Better training methods for related languages (European)
 - Modifications for AIAYN for multilinguality

THANK YOU FOR LISTENING