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Introduction
Background: metrics for MT

Trade-off between
ease of use and
correlation with human judgment

> Light methods
(e.g., BLEU, WER)

> Are very easy to use
Are better fitted to languages with less resource

» Trained or knowledge-based metrics
(e.g., BEER, DPMFcomB, UoW.REVAL)

» Better correlate with human judgment
» But need training or resources (e.g., paraphrase tables)
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Background: metrics for MT

Trade-off between
use of characters and
use of words

» Word-based methods
(e.g., BLEU, WER)
» Are well-fitted for languages like English or segmented Chinese

» Character-based methods
(e.g., CHRF, CHARACTER)
» Are usually subject to noise for languages using the Latin script
» But are better fitted for morphologically rich languages
Better correlate with human judgments
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Introduction
Background: metrics for MT

Trade-off between
ease of visualisation and
the scoring mechanism

» Word-based methods
(e.g., TER, METEOR)

» Allow to naturally derive user-friendly visual correspondences
between candidate and reference translations

» Overlapping N-gram-based approaches
(e.g., BLEU or CHRF)

» Are more difficult to visualise
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_Introduction
Proposal

CHARCUT, a light character-based machine translation evaluation
metric derived from a human-targeted segment difference
visualisation algorithm.
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Proposal

CHARCUT, a light character-based machine translation evaluation
metric derived from a human-targeted segment difference
visualisation algorithm.

» Light automatic metric for MT output:
no training, no use of extra knowledge

» High correlation with human judgment:
on par with trained or knowledge-based metrics
~ best “untrained” metrics and > BLEU and TER

» Meaningful visualisation of MT output vs. human reference:
scores directly reflect human-readable string differences
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Method

Combination of

> iterative search for longest common substrings
between candidate and reference translation

» simple length-based threshold
= loose differences = less noisy character matches.
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Actual visualisation output: Russian—English

S%g. Score Segment comparison: Deletion Insertion Shift
Src: 28-nerHuii nosap HaigeH MepTBLIM B TOProBoM yeHTpe CaH-PpaHumcKo
33/109=
1 30% MT: 28-year-old chef found dead in San Francisco shopping centre
Ref: 2B-Year-01d Chef Found Dead at San Francisco Mall
Sre: 28-neTHuil NoBap, KOTOPLI HegasHo nepeexan B Can-®paHuncKo, 6bin HaRAeH MEDTELIM B IECTHHYHOM
" nponeTe MECTHOIO TOProBOro UeHTpa Ha SToi Hegene.
2 31/249= MT: the 28-year-old chef, who has recently moved to San Francisco, was found dead in the
12% * stairwell of a local shopping centre this week.
Rer: A 28-year-old chef who had recently moved to San Francisco was found dead in the
* stairwell of a local mall this week.
. OBHAKC GpaT XepTBb! FOBOPHT, HTO OH HE MOXKET BO0GPAAHTE KOro-T0, KTO Xenal bl DHYMHHTE 6My GOlb,
° oTMevan: "HakoHel-To gena y Hero Wi Ha nag".
3 111/282= MT: However, the victim's brother says he can't imagine anyone who would wish to cause him
42% * pain, noting: "Finally he went on the lad.”
Rep. BUt the victim's brother says he can't think of anyone who would want to hurt him,
° saying, "Things were finally going well for him."
Lardilleux and Lepage IWLST 2017




Actual visualisation output: English—German

The victim's brother, Louis Galicia, toid ABC siafion KGO in San Francisco that Frank, previously a line cook in

Src: Boston, had landed his dream job as line chef at San Francisco's Sons & Daughters restaurant six months
ago.
150/485m Der Bruder des Opfers, Louis Galicien, erzdhlte ABC-Station KGO in San Francisco, dass
6 MT: Frank, zuvor ein Line-Koch in Boston, seinen Traumjob als Linienchef im Restaurant Sons &
31% Daughters von San Francisco vor sechs Monaten gelandet hatte.
Der Bruder des Opfers, Louis Galicia, teilte dem ABS Sender KGO in San Francisco mit,
Rel: dass Frank, der friher als Koch in Boston gearbeitet hat, vor sechs Monaten seinen
Traumjob als Koch im Sons & Daughters Restaurant in San Francisco ergattert hatte.
Src: A spokesperson for Sons & Daughters said they were "shocked and devastated” by his death.
go/211- T Eine Sprecherin von Sons & Daughters sagte, sie seien durch seinen Tod "geschockt und
7 339 * verwiistet” worden.
Rei Ein Sprecher des Sons & Daughters sagte, dass sie Uber seinen Tod “schockiert und am
" Boden zerstért seien”.
Lardilleux and Lepage IWLST 2017




_Introduction
Method description

CHARCUT consists of three phases:

1. an iterative segmentation
by longest common substrings
between the candidate and the reference translations;

2. the identification of string shifts;

3. a scoring phase
based on the lengths of remaining differences.
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Proposed method
Iterative segmentation
Identification of string shifts
Scoring scheme
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_Proposed method
Recursive search

Recursive character-based longest-first approach, starting with
Co = the MT output segment and
Rp = the human reference segment.

Cn+]_ = Cn — LCSUbStr(Cn, Rn) (1)
Rn+1 = Rn — LCSubstr(C,, Ry)
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_Proposed method
Problem with character-based longest-first approach

Problem: Counter-intuitive segmentation.

[...] der_Europdischen_Gemeinsamen Strategie zur Unterstiitzung

" Palastinas [...]
[-..] der_.Gemeinsamen_Europaischen Strategie zur Unterstiitzung

" Palastinas [...]
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Problem with character-based longest-first approach

Problem: Counter-intuitive segmentation.

[...] der_Europdischen_Gemeinsamen Strategie zur Unterstiitzung

" Palastinas [...]
[-..] der_.Gemeinsamen_Europaischen Strategie zur Unterstiitzung

" Palastinas [...]

» The same ending is shared by the two swapped words
Européischen and Gemeinsamen;

» This ending has been integrated into the LCSubstr;

» This prevents the more natural full word matches.

Answer: Making the method aware of word separators.
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_Proposed method
Making the method aware of word separators

When searching for LCSubstr, consider only substr. of Cy and Ry
of the three following types:
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Making the method aware of word separators

When searching for LCSubstr, consider only substr. of Cy and Ry
of the three following types:

» Substring inside one word only, including spaces and
punctuations

Ex.: Hello,.world!!!

» Several entire words, including beginning and end spaces or
punctuations

Ex.: Hello, world!!!
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Making the method aware of word separators

When searching for LCSubstr, consider only substr. of Cy and Ry
of the three following types:

» Substring inside one word only, including spaces and
punctuations

Ex.: Hello,.world!!!

» Several entire words, including beginning and end spaces or
punctuations
Ex.: Hello, world!!!
» Run of non-word characters
Ex.: Hello,_world!!!
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Longest common prefixes and suffixes

» The longest common prefix and the longest common suffix
between Cy and Ry are added to the list of LCSubstr’s,
independently of their length

» providing they match the second or third regular expression and
» were not already extracted as a regular LCSubstr.
» This fixes frequent cases of true negatives
» such as final punctuations or
» segments shorter than the minimum match size
which are usually felt as matches.
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Longest common prefixes and suffixes

» The longest common prefix and the longest common suffix
between Cy and Ry are added to the list of LCSubstr’s,
independently of their length

» providing they match the second or third regular expression and
» were not already extracted as a regular LCSubstr.

» This fixes frequent cases of true negatives

» such as final punctuations or
» segments shorter than the minimum match size
which are usually felt as matches.

» Experiments showed no impact in terms of correlation with
human judgement.
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_Proposed method
End of iterative segmentation

» Stop when length(LCSubstr(C,, R,)) < some threshold
(typically 3)
» Add longest common prefixes and suffixes.
» The set of LCSubstr's extracted up to last step n
(including longest common prefix and suffix)
are matches;
» The remaining strings,
i.e., the last computed C, and R,
are loose differences.
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_Proposed method
Example of iterative search for longest common substrings

n Cn Ry LCSubstr(Cp, Rp) length
0 Before._the_game,.it_had_arrived._at Before_the_match_there_was_a_riot
—the_stadium_to_riots. —in_the_stadium.
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n Cn Ry LCSubstr(Cp, Rp) length
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n Cn Ry LCSubstr(Cp, Rp) length
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_Proposed method
Example of segmentation

Co: Before_the_game,._it_had_arrived_at_the_stadium to_riots.

/

Ro: Before_the_match._there_was._a_riot-in_the_stadium.

» LCSubstr's are in black.
» Remaining substrings (in red and blue) are loose differences.

Lardilleux and Lepage IWLST 2017 17 / 34



Visualising string shifts

Co: Before.the.game,_it_had_arrived._at_the stadium.to_riots.

/

Ro: Before_the_match._there_was._a_riot-in_the_stadium.

» Here, _the_stadium and _riot are crossed.
» For the purpose of visualisation,

» the shortest one (_riot) is marked as a shift,
» and the other one as a regular match.

Lardilleux and Lepage IWLST 2017 18 / 34



_Proposed method e —
|dentifying string shifts

Cinatch = Before_the_|_the_stadium|.riot]|.
Rmatch = Before_the.|.riot|_ the_stadium|.

To identify string shifts:
» determine longest subsequence of tokens (LCStr's)

> longest is defined in number of chars, not tokens.
Here: Before_the.|_the_stadium|. (12+11+1=24 chars)
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|dentifying string shifts

Cinatch = Before_the_|_the_stadium|.riot]|.
Rmatch = Before_the.|.riot|_ the_stadium|.

To identify string shifts:
» determine longest subsequence of tokens (LCStr's)

> longest is defined in number of chars, not tokens.
Here: Before_the.|_the_stadium|. (12+11+1=24 chars)

Regular matches / shifts:
» Tokens in longest subsequence are regular matches.

» Tokens outside of longest subsequence are shifts.
Here: _riot.
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_Proposed method R —
Scoring scheme

Result of the iterative segmentation and identification of shifts:
segmentation of input segments in 3 types of substrings:

» regular matches

» shifts
» loose differences, i.e.,

» deletions from the candidate segment
» insertions into the reference segment
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Indiv. score
» regular matches 0
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» deletions from the candidate segment 1
» insertions into the reference segment 1

Lardilleux and Lepage IWLST 2017 20 / 34



Scoring scheme

Result of the iterative segmentation and identification of shifts:
segmentation of input segments in 3 types of substrings:

Score o< F#deletions + #insertions + #shifts

Indiv. score
» regular matches 0

» shifts (counted once although appear in both segments) 1
» loose differences, i.e.,

» deletions from the candidate segment 1
» insertions into the reference segment 1
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Optimizing for correlation with human judgement

Two different normalisations:

» total length of candidate and reference (intuitive)
= score between 0 and 1:

#deletions + #insertions + #shifts 2)
|Go| + | Rol

» length of candidate only (Wang et al., 2016)
= higher correlation with human judgements

SCOT€orig =

. #deletions + #insertions + #shifts
scorec = min | 1, 2% |G (3)
0

Lardilleux and Lepage IWLST 2017 21 /34



_Proposed method R —
Pearson correlation for the two scoring schemes
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Absolute Pearson correlation against minimum match size in characters
(length-based threshold) (system DA, segment-DA, segment-HUME)
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Comparison with other metrics
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_CempEmethemmmes 0 |
Comparison

» With metrics that took part in WMT16 tasks

» system-level DA
» segment-level DA
» segment-level HUME

» Criterion: average Pearson correlation coefficients over all
language pairs.
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_CempEmethemmmes 0 |
Comparison

» With metrics that took part in WMT16 tasks

» system-level DA
» segment-level DA
» segment-level HUME

» Criterion: average Pearson correlation coefficients over all
language pairs.

Notations:

» Brackets = metrics that did not participate in the
English-to-Russian evaluation (i.e., one less figure used);

» Asterisks = our own runs;

» Everything else = figures from (Bojar et al., 2016).
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_Compmin eihediprmenes [
System-level DA

Metric Avg. corr. £ stddev.

UoW.REVAL (0.972 + 0.013)

MPEDA 0.945 + 0.044

*CHARCUT 0.942 £+ 0.037

CHRF2 0.934 + 0.038 :

CHRF3 0.934 £ 0.035 MOSESCDERO0.861 + 0.061
*Lev. distance 0.930 + 0.049 MOSESTER 0.851 4+ 0.061
BEER 0.928 4+ 0.054 MOSESPER  0.842 4 0.096
cHRF1 0.927 £ 0.051 WORDF'3 0.836 + 0.069
CharacTER 0.922 + 0.055 WORDF?2 0.836 + 0.069
MTEVALNIST 0.886 + 0.068 WORDF'1 0.831 £+ 0.071

MTEVALBLEU 0.867 £ 0.060 MOSESWER 0.812 4+ 0.099
. MOSESBLEU 0.810 + 0.082
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Segment-level DA

Metric

Avg. corr. & stddev.

DPMFcoMmB
METRICS-F
COBALT-F.
MPEDA
*CHARCUT
UPF-CcOBALT
CHRF'3
CHRF2

*Lev. distance
BEER

cHRrRF1
*CharacTER
UoW.REVAL

Lardilleux and Lepage

(0.633 = 0.048)
(0.631 + 0.049)
(0.617 + 0.040)
0.584 + 0.053
0.582 + 0.076
(0.582 + 0.060)
0.560 + 0.082
0.559 + 0.081
0.556 + 0.065
0.556 + 0.082
0.548 + 0.079
0.537 + 0.074
0.530 + 0.035

IWLST 2017

0.524 + 0.055
WORDF2 0.522 £ 0.055
wORDF1 0.514 + 0.055
SENTBLEUO0.510 + 0.039
*TER 0.485 + 0.052
DTED 0.330 £ 0.058

WORDF'3
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_Compmin eihediprmenes [
Segment-level HUME

Lardilleux and Lepage

Metric Avg. corr. £ stddev.
CHRF3 0.519 + 0.096
CHRF2 0.517 £ 0.092
BEER 0.513 £+ 0.079
CHRF'1 0.503 £ 0.079
MPEDA 0.492 £ 0.073
*CHARCUT 0.483 £+ 0.121
WORDF'3 0.452 + 0.092
WORDEF'2 0.450 + 0.091
WORDF'1 0.439 + 0.088
*CharacTER 0.438 £+ 0.126
*Lev. distance 0.437 £ 0.109
SENTBLEU 0.401 £ 0.101
*TER 0.394 £+ 0.125

IWLST 2017
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_Compmin eihediprmenes [
Analysis of the comparison with other metrics

» High correlation with human judgment

Lardilleux and Lepage IWLST 2017 28 / 34



_Compmin eihediprmenes [
Analysis of the comparison with other metrics

» High correlation with human judgment

» Comparison with light metrics:

» Top average correl. on system- and segment-level DA eval.
compared with CHRF, WORDF', CharacTER
» Much higher correl. than BLEU and TER

Lardilleux and Lepage IWLST 2017 28 / 34



_Compmin eihediprmenes [
Analysis of the comparison with other metrics

» High correlation with human judgment

» Comparison with light metrics:

» Top average correl. on system- and segment-level DA eval.
compared with CHRF, WORDF', CharacTER
» Much higher correl. than BLEU and TER

» Comparison with trained metrics:
» On par with MPEDA (relies on additional training corpora)
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Speed

On a 2.8 GHz processor, for Python implementations:

Metric segments/s
CHRF 600
CHARCUT 260
CharacTER 54

Lardilleux and Lepage IWLST 2017 29 / 34
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_Conclusion
Conclusion

CHARCUT: character-based machine translation evaluation metric.

» Is language independent.
» Requires no additional resource or training.

» Relies on loose differences,
residuals of iterative search for longest common substrings.

» Was initially designed for displaying differences
between reference and candidate segments to end users.

» Produces scores that directly reflect differences.

» Exhibits good correlation with human judgement.

High correlation with

Good visual representation = .
human judgement
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_Conclusion
Future work

» Finer handling of shifts
as CHARCUT is currently unaware of shift distance;
» Automatic correlation of the minimum match size
with the number of highlighted substrings
in order to keep outputs readable even with very different
input segments.
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Availability

CHARCUT is open source and available at
https://github.com/alardill/CharCut.

It consists of a single Python script that computes scores and
highlights differences (HTML outputs).
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https://github.com/alardill/CharCut

Seg. id Score Segment comparison: Deletion Insertion Shift

] 19/50= MT: Thank you for listening.
38% Ref: Thanks for your attention.
Total 19/50=
o1al
38%
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Interface convention

» The interface is kept slick on purpose.
» It uses only classical colours:

red for deletions,

blue for insertions,

bold for shifts,

yellow background for matching substrings
when pointed with the mouse.

v

v vy

» The scores directly reflect the number of
highlighted characters.

Lardilleux and Lepage IWLST 2017 1/3



HTML sample output (WMT17 English-Chinese, 2-char
min match size)

Seg

Score

Segment comparison: Deletion Insertion Shift

69%

rc. 28-Year-Old Chef Found Dead at San Francisco Mall

28% M) Chef Fand JEFEIRS LRI

- 285 FM AL T (R Ell—KFm iR

30%

A 28-year-old chef who had recently moved fo San Francisco was found dead in the stairwell of
a local mall this week.

—HECTE] B L E282 B, R it — SRR AR (A R T .

- A MR E B 8 —fr s B IR R AR I T2 — R Sipa0tEaE.

match: 5

61%

But the victim's brother says he can't think of anyone who would want to hurt him, saying,

© "Things were finally going well for him.”

EEEANTTE. WFGEEEHET ASBGER, . ~ERETIRAAT. »

L EERANFFETEANEESAENET M, FiR— g TirRkT. »

Total

51%
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