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Introduction Background

Background: metrics for MT

Trade-off between
ease of use and
correlation with human judgment

I Light methods
(e.g., BLEU, WER)
I Are very easy to use

Are better fitted to languages with less resource

I Trained or knowledge-based metrics
(e.g., BEER, DPMFcomb, UoW.ReVaL)
I Better correlate with human judgment
I But need training or resources (e.g., paraphrase tables)

Lardilleux and Lepage IWLST 2017 2 / 34



Introduction Background

Background: metrics for MT

Trade-off between
ease of use and
correlation with human judgment

I Light methods
(e.g., BLEU, WER)
I Are very easy to use

Are better fitted to languages with less resource

I Trained or knowledge-based metrics
(e.g., BEER, DPMFcomb, UoW.ReVaL)
I Better correlate with human judgment
I But need training or resources (e.g., paraphrase tables)

Lardilleux and Lepage IWLST 2017 2 / 34



Introduction Background

Background: metrics for MT

Trade-off between
ease of use and
correlation with human judgment

I Light methods
(e.g., BLEU, WER)
I Are very easy to use

Are better fitted to languages with less resource

I Trained or knowledge-based metrics
(e.g., BEER, DPMFcomb, UoW.ReVaL)
I Better correlate with human judgment
I But need training or resources (e.g., paraphrase tables)

Lardilleux and Lepage IWLST 2017 2 / 34



Introduction Background

Background: metrics for MT

Trade-off between
use of characters and
use of words

I Word-based methods
(e.g., BLEU, WER)
I Are well-fitted for languages like English or segmented Chinese

I Character-based methods
(e.g., chrF, CharacTer)
I Are usually subject to noise for languages using the Latin script
I But are better fitted for morphologically rich languages

Better correlate with human judgments

Lardilleux and Lepage IWLST 2017 3 / 34



Introduction Background

Background: metrics for MT

Trade-off between
use of characters and
use of words

I Word-based methods
(e.g., BLEU, WER)
I Are well-fitted for languages like English or segmented Chinese

I Character-based methods
(e.g., chrF, CharacTer)
I Are usually subject to noise for languages using the Latin script
I But are better fitted for morphologically rich languages

Better correlate with human judgments

Lardilleux and Lepage IWLST 2017 3 / 34



Introduction Background

Background: metrics for MT

Trade-off between
use of characters and
use of words

I Word-based methods
(e.g., BLEU, WER)
I Are well-fitted for languages like English or segmented Chinese

I Character-based methods
(e.g., chrF, CharacTer)
I Are usually subject to noise for languages using the Latin script
I But are better fitted for morphologically rich languages

Better correlate with human judgments

Lardilleux and Lepage IWLST 2017 3 / 34



Introduction Background

Background: metrics for MT

Trade-off between
ease of visualisation and
the scoring mechanism

I Word-based methods
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I Allow to naturally derive user-friendly visual correspondences
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I Overlapping N-gram-based approaches
(e.g., BLEU or chrF)
I Are more difficult to visualise
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Introduction Method description

Proposal

CharCut, a light character-based machine translation evaluation
metric derived from a human-targeted segment difference
visualisation algorithm.

I Light automatic metric for MT output:
no training, no use of extra knowledge

I High correlation with human judgment:
on par with trained or knowledge-based metrics
' best “untrained” metrics and � BLEU and TER

I Meaningful visualisation of MT output vs. human reference:
scores directly reflect human-readable string differences
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Introduction Method description

Method

Combination of

I iterative search for longest common substrings
between candidate and reference translation

I simple length-based threshold
⇒ loose differences ⇒ less noisy character matches.
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Introduction Method description

Actual visualisation output: Russian–English

Lardilleux and Lepage IWLST 2017 7 / 34



Introduction Method description

Actual visualisation output: English–German
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Introduction Method description

Method description

CharCut consists of three phases:

1. an iterative segmentation
by longest common substrings
between the candidate and the reference translations;

2. the identification of string shifts;

3. a scoring phase
based on the lengths of remaining differences.
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Proposed method

Introduction
Background
Method description

Proposed method
Iterative segmentation
Identification of string shifts
Scoring scheme

Comparison with other metrics

Conclusion
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Proposed method Iterative segmentation

Recursive search

Recursive character-based longest-first approach, starting with
C0 = the MT output segment and
R0 = the human reference segment.

Cn+1 = Cn − LCSubstr(Cn,Rn)
Rn+1 = Rn − LCSubstr(Cn,Rn)

(1)

Lardilleux and Lepage IWLST 2017 11 / 34



Proposed method Iterative segmentation

Problem with character-based longest-first approach

Problem: Counter-intuitive segmentation.

C :
[. . . ] der Europäischen Gemeinsamen Strategie zur Unterstützung
Palästinas [. . . ]

R:
[. . . ] der Gemeinsamen Europäischen Strategie zur Unterstützung
Palästinas [. . . ]

I The same ending is shared by the two swapped words
Europäischen and Gemeinsamen;

I This ending has been integrated into the LCSubstr;

I This prevents the more natural full word matches.

Answer: Making the method aware of word separators.
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[. . . ] der Europäischen Gemeinsamen Strategie zur Unterstützung
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Proposed method Iterative segmentation

Making the method aware of word separators

When searching for LCSubstr, consider only substr. of C0 and R0

of the three following types:

I Substring inside one word only, including spaces and
punctuations

Ex.: Hello, world!!!

I Several entire words, including beginning and end spaces or
punctuations

Ex.: Hello, world!!!

I Run of non-word characters
Ex.: Hello, world!!!
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Proposed method Iterative segmentation

Longest common prefixes and suffixes

I The longest common prefix and the longest common suffix
between C0 and R0 are added to the list of LCSubstr’s,
independently of their length

I providing they match the second or third regular expression and
I were not already extracted as a regular LCSubstr.

I This fixes frequent cases of true negatives
I such as final punctuations or
I segments shorter than the minimum match size

which are usually felt as matches.

I Experiments showed no impact in terms of correlation with
human judgement.
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Proposed method Iterative segmentation

End of iterative segmentation

I Stop when length(LCSubstr(Cn, Rn)) < some threshold
(typically 3)

I Add longest common prefixes and suffixes.

I The set of LCSubstr’s extracted up to last step n
(including longest common prefix and suffix)

are matches;

I The remaining strings,
i.e., the last computed Cn and Rn,

are loose differences.
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Proposed method Iterative segmentation

Example of iterative search for longest common substrings

n Cn Rn LCSubstr(Cn, Rn) length

0 Before the game, it had arrived at
the stadium to riots.

Before the match there was a riot
in the stadium.

1 Before the game, it had arrived at
the stadium to riots.

Before the match there was a riot
in the stadium.

the stadium 12

2
Before the game, it had arrived at
| to riots.

Before the match there was a riot
in|. Before the 11

3 |game, it had arrived at| to riots. |match there was a riot in|. riot 5
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Proposed method Iterative segmentation

Example of segmentation

C0: Before the game, it had arrived at the stadium to riots.

R0: Before the match there was a riot in the stadium.

I LCSubstr’s are in black.

I Remaining substrings (in red and blue) are loose differences.
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Proposed method Identification of string shifts

Visualising string shifts

C0: Before the game, it had arrived at the stadium to riots.

R0: Before the match there was a riot in the stadium.

I Here, the stadium and riot are crossed.
I For the purpose of visualisation,

I the shortest one ( riot) is marked as a shift,
I and the other one as a regular match.

Lardilleux and Lepage IWLST 2017 18 / 34



Proposed method Identification of string shifts

Identifying string shifts

Cmatch = Before the | the stadium| riot|.
Rmatch = Before the | riot| the stadium|.

To identify string shifts:

I determine longest subsequence of tokens (LCStr’s)

I longest is defined in number of chars, not tokens.
Here: Before the | the stadium|. (12+11+1=24 chars)

Regular matches / shifts:

I Tokens in longest subsequence are regular matches.

I Tokens outside of longest subsequence are shifts.
Here: riot.
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Proposed method Scoring scheme

Scoring scheme

Result of the iterative segmentation and identification of shifts:
segmentation of input segments in 3 types of substrings:

Score ∝ #deletions + #insertions + #shifts

Indiv. score

I regular matches

I shifts

(counted once although appear in both segments) 1

I loose differences, i.e.,
I deletions from the candidate segment
I insertions into the reference segment
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Proposed method Scoring scheme

Optimizing for correlation with human judgement

Two different normalisations:

I total length of candidate and reference (intuitive)
⇒ score between 0 and 1:

scoreorig =
#deletions + #insertions + #shifts

|C0|+ |R0|
(2)

I length of candidate only (Wang et al., 2016)
⇒ higher correlation with human judgements

scoreC = min

(
1,

#deletions + #insertions + #shifts

2× |C0|

)
(3)

Lardilleux and Lepage IWLST 2017 21 / 34



Proposed method Scoring scheme

Pearson correlation for the two scoring schemes
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Comparison with other metrics
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Comparison with other metrics

Comparison

I With metrics that took part in WMT16 tasks
I system-level DA
I segment-level DA
I segment-level HUME

I Criterion: average Pearson correlation coefficients over all
language pairs.

Notations:

I Brackets = metrics that did not participate in the
English-to-Russian evaluation (i.e., one less figure used);

I Asterisks = our own runs;

I Everything else = figures from (Bojar et al., 2016).
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Comparison with other metrics

System-level DA

Metric Avg. corr. ± stddev.

UoW.ReVaL (0.972 ± 0.013)
MPEDA 0.945 ± 0.044
*CharCut 0.942 ± 0.037
chrF2 0.934 ± 0.038
chrF3 0.934 ± 0.035
*Lev. distance 0.930 ± 0.049
BEER 0.928 ± 0.054
chrF1 0.927 ± 0.051
CharacTer 0.922 ± 0.055
mtevalNIST 0.886 ± 0.068
mtevalBLEU 0.867 ± 0.060

...

...
mosesCDER0.861 ± 0.061
mosesTER 0.851 ± 0.061
mosesPER 0.842 ± 0.096
wordF3 0.836 ± 0.069
wordF2 0.836 ± 0.069
wordF1 0.831 ± 0.071
mosesWER 0.812 ± 0.099
mosesBLEU0.810 ± 0.082
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Comparison with other metrics

Segment-level DA

Metric Avg. corr. ± stddev.

DPMFcomb (0.633 ± 0.048)
metrics-f (0.631 ± 0.049)
cobalt-f. (0.617 ± 0.040)
MPEDA 0.584 ± 0.053
*CharCut 0.582 ± 0.076
UPF-cobalt (0.582 ± 0.060)
chrF3 0.560 ± 0.082
chrF2 0.559 ± 0.081
*Lev. distance 0.556 ± 0.065
BEER 0.556 ± 0.082
chrF1 0.548 ± 0.079
*CharacTer 0.537 ± 0.074
UoW.ReVaL 0.530 ± 0.035

...

...
wordF3 0.524 ± 0.055
wordF2 0.522 ± 0.055
wordF1 0.514 ± 0.055
sentBLEU0.510 ± 0.039
*TER 0.485 ± 0.052
DTED 0.330 ± 0.058
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Comparison with other metrics

Segment-level HUME

Metric Avg. corr. ± stddev.

chrF3 0.519 ± 0.096
chrF2 0.517 ± 0.092
BEER 0.513 ± 0.079
chrF1 0.503 ± 0.079
MPEDA 0.492 ± 0.073
*CharCut 0.483 ± 0.121
wordF3 0.452 ± 0.092
wordF2 0.450 ± 0.091
wordF1 0.439 ± 0.088
*CharacTer 0.438 ± 0.126
*Lev. distance 0.437 ± 0.109
sentBLEU 0.401 ± 0.101
*TER 0.394 ± 0.125
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Comparison with other metrics

Analysis of the comparison with other metrics

I High correlation with human judgment

I Comparison with light metrics:
I Top average correl. on system- and segment-level DA eval.

compared with chrF, wordF, CharacTer
I Much higher correl. than BLEU and TER

I Comparison with trained metrics:
I On par with MPEDA (relies on additional training corpora)
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Comparison with other metrics

Speed

On a 2.8 GHz processor, for Python implementations:

Metric segments/s

chrF 600
CharCut 260
CharacTer 54
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Conclusion

Conclusion

CharCut: character-based machine translation evaluation metric.

I Is language independent.

I Requires no additional resource or training.

I Relies on loose differences,
residuals of iterative search for longest common substrings.

I Was initially designed for displaying differences
between reference and candidate segments to end users.

I Produces scores that directly reflect differences.

I Exhibits good correlation with human judgement.

Good visual representation ⇒ High correlation with
human judgement
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Conclusion

Future work

I Finer handling of shifts
as CharCut is currently unaware of shift distance;

I Automatic correlation of the minimum match size
with the number of highlighted substrings
in order to keep outputs readable even with very different
input segments.
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Conclusion

Availability

CharCut is open source and available at

https://github.com/alardill/CharCut.

It consists of a single Python script that computes scores and
highlights differences (HTML outputs).
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Appendix

Interface convention

I The interface is kept slick on purpose.
I It uses only classical colours:

I red for deletions,
I blue for insertions,
I bold for shifts,
I yellow background for matching substrings

when pointed with the mouse.

I The scores directly reflect the number of
highlighted characters.
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Appendix

HTML sample output (WMT17 English-Chinese, 2-char
min match size)
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