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Findings

Experiments

Noise Model

i.e. such that: 
 

and 

Motivation 

  Real-world data is noisy 
  Spelling mistakes 
  Preprocessing errors 
  Upstream errors,  

e.g. speech recognition output 
                   èthis work 

 
  Noisy inputs are challenging 

  How to translate errors? 
  Robustness: translate 

non-erroneous parts correctly 
  Train/test mismatch 
  NMT lacks robustness 

[Chen+2016,Heigold+2017, 
Belinkov+2017,Ruiz+2017] 
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NMT Output seq. Input seq. 
Noisy! 

Example recognition errors: 
 
Boesch as ever his son decides to 
have a feast 
 
Buildings and boundaries around 
the location very part 

Goals 
 

•  Ignore or guess noisy parts 
•  Correctly translate clean parts 

My   name   is                    ?  

Target 
context 

#     @       å?   æø           

Source 
context 

  
  Given: 

  Noise magnitude             , sentence length    , vocabulary  
  During training, for each source-side sentence 

  Sample  
  Sample # substitutions, insertions deletions:  
  Sample uniformly without replacement: 

  substitution, deletion positions  
  insertion positions  

  For substitutions, insertions: sample new word uniformly  

τ ∈ [0,1]

#edits ~ TruncPoisson(τ ⋅n,n)

n V

ns ,ni ,nd ~ DiscrSimplex(3,e)
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~V

ns + ni + nd = e
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Background 
  General-purpose regularizers 

  good generalization à robustness 
[Caramanis+2011] 
  E.g. dropout 

  Here: Task-specific regularizers 
  Randomly corrupt source-side 

during training 
à learn how to deal with errors, 
lower training/test mismatch 
  Requires care: Trainability issues, 

explaining-away effects 

  
Data 
  Fisher-Callhome Spanish-English speech translation 

corpus [Post+2013] 
  Report results on Fisher/Dev speech recognition outputs 

(WER 41.3%) 
Model: Attentional encoder-decoder, standard settings 

Variational dropout (p=0.5), word type dropout (p=0.1) 
Pretrain on reference transcripts, fine-tune on noisy data 

  Main results (noisy inputs): 
  Noise helps, sensitive to τ 
  Poor performance at τ=0.4 (close to 

test-time noise) à trainability issues! 

  Translating clean reference transcripts: 
  Noise mostly does not help 

  N-gram precision (noisy inputs): 
  More training noise à shorter outputs 
  Del-only counteracts this, low precision 

  Influence of input WER 
  Noisy training à output length 

more stable 

Length control? But ideal precision/recall trade-off unclear for noisy inputs 

τ=0.02 


