

Karlsruhe Institute of Technology

Institute for Anthropomatics and Robotics Interactive Systems Lab

Toward Robust Neural Machine Translation for Noisy Input Sequences

Matthias Sperber, Jan Niehues, Alex Waibel

Real-world data is noisy

- Spelling mistakes
- Preprocessing errors
- Upstream errors, e.g. speech recognition output \rightarrow this work

- Given:
 - Noise magnitude $\tau \in [0,1]$, sentence length *n*, vocabulary V
- During training, for each source-side sentence
 - Sample #*edits* ~ TruncPoisson($\tau \cdot n, n$)
 - Sample # substitutions, insertions deletions: $\langle n_s, n_i, n_d \rangle \sim \text{DiscrSimplex}(3, e)$
 - Sample uniformly without replacement:
 - substitution, deletion positions $\sim \{1, ..., n\}$
 - insertion positions $\sim \{0, ..., n\}$
 - For substitutions, insertions: sample new word uniformly $\sim V$

Experiments

Data

inigram noise

deletion-only noise

vanilla noise

baseline

0.2

0.1

- Fisher-Callhome Spanish-English speech translation corpus [Post+2013]
- Report results on Fisher/Dev speech recognition outputs (WER 41.3%)
- Model: Attentional encoder-decoder, standard settings

Noisy inputs are challenging

- How to translate errors?
- Robustness: translate non-erroneous parts correctly
- Train/test mismatch
- NMT lacks robustness

Example recognition errors:

Boesch as ever his son decides to have a feast

Buildings and boundaries around the location very part

36.5 r

references)

4

BLEU

a. 35.5

0.01

0.02

0.05

Noise helps, sensitive to τ

Main results (noisy inputs):

 τ (noise parameter)

Poor performance at $\tau=0.4$ (close to

[*Chen+2016,Heigold+2017,*] *Belinkov+2017,Ruiz+2017*]

Goals

- Ignore or guess noisy parts
- Correctly translate clean parts

Background

- General-purpose regularizers
 - **good generalization** \rightarrow robustness [Caramanis+2011]
 - E.g. dropout
- Here: Task-specific regularizers
 - Randomly corrupt source-side during training

- Variational dropout (p=0.5), word type dropout (p=0.1)
- Pretrain on reference transcripts, fine-tune on noisy data

Findings

i.e. such that:

 $n_s + n_i + n_d = e$ and $n_s, n_i, n_d \in N^0$

Translating clean reference transcripts:

www.kit.edu

Noise mostly does not help

 \rightarrow learn how to deal with errors, lower training/test mismatch Requires care: Trainability issues, explaining-away effects

KIT – The Research University in the Helmholtz Association