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FOREWORD

The International Workshop on Spoken Language Translation

(IWSLT) is an annual scientific workshop, associated with an open

evaluation campaign on spoken language translation, where both

scientific papers and system descriptions are presented. The 14th

International Workshop on Spoken Language Translation takes

place in Tokyo, Japan on Dec. 14 and 15, 2017. Since 2004, the

annual workshop has been held in Kyoto, Pittsburgh, Kyoto,

Trento, Honolulu, Tokyo, Paris, San Francisco, Hong Kong, and

Heidelberg, Lake Tahoe, Da Nang, Seattle, and this year in Tokyo.

One of the prominent research activities in spoken language translation is the work

conducted by the Consortium for Speech Translation Advanced Research (C-STAR), which

was an international partnership of research laboratories engaged in automatic

translation of spoken language started in early 90s. The C-STAR members had initiated

the first shared task-type Spoken Language Translation Workshop in 2004 and the IWSLT

has been growing up with more participants and steering committee members.

The IWSLT includes scientific papers in dedicated technical sessions, either in oral or

poster form. The contributions cover theoretical and practical issues in the field of

Machine Translation (MT) in general and Spoken Language Translation (SLT), including

Automatic Speech Recognition (ASR), Text-to-Speech Synthesis (TTS), and MT, in

particular:

▪ Speech and text MT

▪ Integration of ASR and MT

▪MT and SLT approaches

▪MT and SLT evaluation

▪ Language resources for MT and SLT

▪ Open source software for MT and SLT

▪ Adaptation in MT

▪ Simultaneous speech translation

▪ Speech translation of lectures
▪ Efficiency in MT

▪ Stream-based algorithms for MT

▪Multilingual ASR and TTS

▪ Rich transcription of speech for MT

▪ Translation of on-verbal events

_____________________________________________________________
Proceedings of the 14th International Workshop on Spoken Language Translation

Tokyo, Japan, December 14th-15th, 2017

iii



Submitted manuscripts were carefully peer-reviewed by three members of the program

committee and papers were selected based on their technical merit and relevance to the

conference. In addition to core statistical machine translation papers, the technical

program covers a wide spectrum of topics related to spoken language translation, ranging

from issues related to real-time interpretation or to the translation of dialogs to more

practical issues related to the integration of speech and translation technologies. Several

important new annotated corpora will also be presented during the workshop. In

summary, the large number of submissions as well as the high quality of the submitted

papers indicates the interest on spoken language translation as a research field and the

growing interest in these technologies and their practical applications.

The results of the spoken language translation evaluation campaigns organized in the

framework of the workshop are also an important part of IWSLT. Those evaluations are

organized in the manner of competition. While participants compete for achieving the

best result in the evaluation, they come together afterwards, and discuss and share their

techniques that they used in their systems. In this respect, IWSLT proposes challenging

research tasks and an open experimental infrastructure for the scientific community

working on spoken and written language translation. This year, the IWSLT evaluation

offered a very challenging and appealing task on the spoken language translation of

public speeches (TALK) in a variety of topics and dialogue, including a dedicated task to

automatic speech recognition in order to cover the full pipeline of speech translation.

For each task, monolingual and bilingual language resources, as needed, are provided to

participants in order to train their systems, as well as sets of manual and automatic

speech transcripts (with n-best and lattices) and reference translations, allowing

researchers working only on written language translation to also participate. Moreover,

blind test sets are released and all translation outputs produced by the participants are

evaluated using several automatic translation quality metrics. For the primary

submissions of all MT and SLT tasks, a human evaluation was carried out as well.

Each participant in the evaluation campaign has been requested to submit a paper

describing the system and the utilized resources. A survey of the evaluation campaigns is

presented by the organizers.

Apart from the technical content of the conference, I hope all participants enjoy staying

in Tokyo, one of the world’s biggest metropolitan with cultural diversity.

Welcome to Tokyo!

Satoshi Nakamura,

Workshop Chair IWSLT 2017
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Chair: Katsuhito Sudoh (1F 102 Presentation Room)

“Overview of the IWSLT 2017 Evaluation Campaign”,
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Japan), Koichiro Yoshino (NAIST, Japan), Christian Federmann (Microsoft, USA)

12:00-13:30 Lunch

13:30-15:30 POSTER and EXHIBITION SESSION 
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P04: “Toward Robust Neural Machine Translation for Noisy Input Sequences”, Matthias

Sperber (KIT, Germany), Jan Niehues (KIT, Germany), and Alex Waibel (KIT,
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P05: “Monolingual Embeddings for Low Resourced Neural Machine Translation”,
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P06: “Effective Strategies in Zero-Shot Neural Machine Translation”, Thanh-Le Ha (KIT,
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� Exhibition:

Ex1: "Multilingual Translation System," Panasonic Corporation, Japan
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O1-1: “Towards Better Translation Performance on Spoken Language”, Chao Bei (GTCOM 

China) and Hao Zong (GTCOM, China)

O1-2: “Kyoto University MT System Description for IWSLT 2017”, Raj Dabre (Kyoto Uni.,
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Friday, December 15th, 2017

08:30-09:30 WORKSHOP REGISTRATION

09:30-10:30 INVITED TALK 2 

Chair: Satoshi Nakamura (1F 102 Presentation Room)

Simultaneous Interpreting, Cognitive Constraints, and Information Structure

Akira Mizuno (Aoyama Gakuin University & JAITS, Japan)

10:30-11:00 Coffee Break

11:00-12:00 ORAL SESSION 2

Chair: Luisa Bentivogli (1F 102 Presentation Room)

(each 30min: 25min presentation + 5min Q&A)

O2-1: “CharCut: Human-Targeted Character-Based MT Evaluation with Loose Differences“,
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O2-2: “Data Selection with Cluster-Based Language Difference Models and Cynical

Selection”, Lucía Santamaría (Amazon, Germany) and Amittai Axelrod (Amazon,

USA)
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13:30-15:00 ORAL SESSION 3

Chair: Sebastian Stüker (1F 102 Presentation Room)

(each 30min: 25min presentation + 5min Q&A)

O3-1: “Continuous Space Reordering Models for Phrase-based MT”, Nadir Durrani (QCRI-

HBKU, Qatar) and Fahim Dalvi (QCRI-HBKU, Qatar)

O3-2: “Evolution Strategy based Automatic Tuning of Neural Machine Translation

Systems”, Hao Qin (Tokyo Inst. Tech, Japan), Takahiro Shinozaki (Tokyo Inst. Tech,

Japan), and Kevin Duh (JHU, USA)

O3-3: “Improving Zero-Shot Translation of Low-Resource Languages”, Surafel M. Lakew
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KEYNOTES

The move to Neural Machine Translation

at Google

Mike Schuster (Google, USA)

Abstract:
Machine learning and in particular neural networks have made great advances in the last few years for

products that are used by millions of people, most notably in speech recognition, image recognition and

most recently in neural machine translation. Neural Machine Translation (NMT) is an end-to-end learning

approach for automated translation, with the potential to overcome many of the weaknesses of

conventional phrase-based translation systems. Unfortunately, NMT systems are known to be

computationally expensive both in training and in translation inference. Also, most NMT systems have

difficulty with rare words. These issues have hindered NMT's use in practical deployments and services,

where both accuracy and speed are essential. In this work, we present GNMT, Google's Neural Machine

Translation system, which addresses many of these issues. The model consists of a deep LSTM network

with 8 encoder and 8 decoder layers using attention and residual connections. To accelerate final

translation speed, we employ low-precision arithmetic during inference computations. To improve

handling of rare words, we divide words into a limited set of common sub-word units for both input and

output. On the WMT'14 English-to-French and English-to-German benchmarks, GNMT achieves

competitive results to state-of-the-art. Using human side-by-side evaluations it reduces translation errors

by more than 60% compared to Google's phrase-based production system. The new Google Translate was

launched in late 2016 and has improved translation quality significantly for all Google users.

Biography:
Dr. Mike Schuster graduated in Electric Engineering from the Gerhard-Mercator University in Duisburg,

Germany in 1993. After receiving a scholarship he spent a year in Japan to study Japanese in Kyoto and

Fiber Optics in the Kikuchi laboratory at Tokyo University. His professional career in machine learning and

speech brought him to Advanced Telecommunications Research Laboratories in Kyoto, Nuance in the US

and NTT in Japan where he worked on general machine learning and speech recognition research and

development after getting his PhD at the Nara Institute of Science and Technology. Dr. Schuster joined the

Google speech group in the beginning of 2006, seeing speech products being developed from scratch to

toy demos to serving millions of users in many languages over the next eight years, and he was the main

developer of the original Japanese and Korean speech recognition models. He is now part of the Google

Brain group which focuses on building large-scale neural network and machine learning infrastructure for

Google and has been working on infrastructure with the TensorFlow toolkit as well as on research, mostly

in the field of speech and translation with various types of recurrent neural networks. In 2016 he led the

development of the new Google Neural Machine Translation system, which reduced translation errors by

more than 60% compared to the previous system.

_____________________________________________________________
Proceedings of the 14th International Workshop on Spoken Language Translation

Tokyo, Japan, December 14th-15th, 2017

xi



Simultaneous Interpreting, Cognitive 

Constraints, and Information Structure

Akira Mizuno

(Aoyama Gakuin University, Japan)

Abstract:
Simultaneous interpreting involves heavy cognitive load, which becomes heavier when interpreters

interpret simultaneously between structurally different languages such as Japanese and English. The

cognitive load can be measured by the number of chunks held in the focus of attention of the Cowan’s

model of working memory. An analysis of a small corpus of simultaneous interpreting between English and

Japanese indicated that simultaneous interpreters frequently made use of translation strategies in order

not to surpass the capacity of working memory. These strategies, different from traditional translation

method which frequently involves word order reversal, seem to have intended to perform “a minimum

reverse integration”. In this talk, I will indicate that these are not ad-hoc strategies but more appropriate

translation method than the traditional method, which can be supported by the theories of information

structure and contribute to the research of machine translation.

Biography:
Akira Mizuno is a former professor of Aoyama Gakuin University and the President of the Japan Association

for Interpreting and Translation Studies (JAITS). He has been involved in conference interpreting and

broadcast interpreting since 1988. His main interest is Interpreting and Translation Studies, Functional

Linguistics, and Cognitive Science. In 2010, he co-edited and co-authored Translation Theories in Japan and

in 2015, published Theories of Simultaneous Interpreting Cognitive Constraints and Translation Strategies.
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MAPS

Map and direction to the banquet place
(10-min walk)

From RIHGA Royal Hotel Tokyo:

To Tokyo Metro Waseda Station: 10-minute walk

To JR Takadanobaba Station

- Free shuttle bus from hotel bus stop: 09:00 to 21:00, 

every 00/30 minutes

- 8 minutes by taxi (900 - 1,000 JPY)

- 30-minute walk
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Floor Maps

An ID card is required to access to the 2F 205 presentation room.

If you want to access to the room, please ask the registration desk.
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Overview of the IWSLT 2017 Evaluation Campaign

M. Cettolo(1) M. Federico(1) L. Bentivogli(1) J. Niehues(2)

S. Stüker(2) K. Sudoh(3) K. Yoshino(3) C. Federmann(4)

(1) FBK - Trento, Italy
(2) KIT - Karlsruhe, Germany

(3) NAIST - Nara, Japan
(4) Microsoft AI+Research - Redmond, WA, USA

Abstract
The IWSLT 2017 evaluation campaign has or-
ganised three tasks. The Multilingual task, which
is about training machine translation systems
handling many-to-many language directions, in-
cluding so-called zero-shot directions. The Di-
alogue task, which calls for the integration of
context information in machine translation, in or-
der to resolve anaphoric references that typically
occur in human-human dialogue turns. And, fi-
nally, the Lecture task, which offers the chal-
lenge of automatically transcribing and translat-
ing real-life university lectures. Following the
tradition of these reports, we will described all
tasks in detail and present the results of all runs
submitted by their participants.

1. Introduction
Spoken language translation (SLT) is the sub-
field of machine translation (MT) that deals with
the translation of spoken language. Spoken lan-
guage, besides differing from written language
from a linguistic point of view [1], also implies
that it is processed under form of a transcript, ei-
ther manually created and cleaned or generated
via automatic speech recognition (ASR) and thus
possibly noisy.

Since 2004, the International Workshop on
Spoken Language Translation has been organiz-
ing a yearly evaluation campaign in conjunction
with a scientific workshop. The main purpose
of the evaluation campaigns is to offer to re-
searchers working in the fields of MT and ASR
challenging tasks to work on, as well as pro-
viding for them a venue where to present, com-
pare and discuss their results. Moreover, in or-
der to offer a friendly environment for scientific
exchange, the spirit of our evaluation has never
been competitive, but rather collaborative.

The tasks offered during the last 13 years
have followed the trend and progress in the field
of MT and ASR. In the first years, SLT tasks fo-
cused on restricted domains, with low language

complexity. Then, following the steady rise of
statistical methods and computing power, less re-
stricted and more data intensive tasks were pro-
gressively introduced, up to the translation of
TED Talks and university lectures. However,
in order to keep the participation barrier low,
IWSLT has also always offered at the same time
tasks that were affordable to small teams or even
students with limited access to computing re-
sources. Another distinctive feature of IWSLT is
the variety of translation directions covered over
the years, which include many American, Euro-
pean and Asian languages.

We believe that scientific communication is
greatly facilitated when all experimental condi-
tions are set in advance and shared by everyone.
This is the reason why, since the begin, IWSLT
has organized shared tasks in which all the train-
ing data, experimental conditions and evaluation
metrics were set and provided in advance.

This year, the IWSLT evaluation campaign
has focused on three tasks, which address rather
different and orthogonal open issues in MT, in
general, and spoken language translation, in par-
ticular. The Multilingual task investigates the
possibility of machines to simultaneously learn
to translate across multiple languages, given par-
allel data (TED Talks) that only partially cov-
ers the tested translation directions. The Dia-
logues task targets instead the challenge for MT
to consider the context of the input (utterance
transcript) that has to be translated, in order to re-
solve the translation of pronouns and other empty
categories. Finally, the Lecture task addresses
the challenge of automatically transcribing and
translating real-life university lectures, in con-
trast of staged and well-rehearsed talks, such as
the TED Talks.

The following sections describe in great de-
tails each task, including the benchmark that has
been developed around it and the outcome of the
evaluation. One specific section will be devoted
to report on the manual evaluation that was car-
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ried out for the Multilingual task. An appendix
concludes this report, which contains all the ta-
bles with the results of all the submitted runs.
Finally, this year we have witnessed, unfortu-
nately, a significant drop in the number of partic-
ipants to the evaluation campaign (see Table 1).
For this reason, part of the open discussion that
will take place at the workshop will regard this is-
sue. Our aim will be to understand if the lack of
participation has a contingent nature or expresses
a shift of interest in the community. In either
cases, as organizers, we will see if and how we
can find better ways to serve the community.

2. Multilingual Task
2.1. Definition

The introduction of translation of TED talks in
IWSLT evaluation campaigns dates back to 2010.
The task continues to receive attention by the re-
search community because it is challenging but
at the same time manageable. In fact, besides
being a realistic exercise, the variety of topics
dealt with in TED talks can be considered un-
limited, which is an interesting research issue in
itself. On the other hand, the truly “in-domain”
training data, that is the set of transcriptions and
translations of TED talks only, amount to just
few million words per side, making the train-
ing/adaptation of even neural engines reasonably
fast.

With the aim of keeping the task interesting
and to follow current trends in research and in-
dustry, this year we proposed the multilingual
translation between any pair of languages from
{Dutch, English, German, Italian, Romanian}
by means of an engine trained with either only
in-domain data (small data condition) or a long
list of permissible resources (large data condi-
tion). In addition, within the small condition, we
proposed the zero-shot translation for the pairs
Dutch-German and Italian-Romanian, in both di-
rections. Zero-shot means to translate with a
multilingual engine between language pairs that
have never seen in this combination during train-
ing. In the specific, the zero-shot engine could
be trained on the in-domain training data of all
the other 16 pairs, but not of those four pairs.
Training data synthesis from the 16 pairs and
pivoting were explicitly forbidden, in order to
force the adoption of methods that deal with the
problem instead of getting around it. The zero-
shot paired languages are from the same family
(West-Germanic and Romance, respectively) in
the hope that they can somehow leverage from
their common origin.

A set of unofficial standard bilingual tasks
between English from one side and {Arabic, Chi-

nese, French, German, Japanese, Korean} on the
other were proposed as well to keep continuity
with past editions.

2.2. Data

In-domain training, development and evaluation
sets were supplied through the website of the
WIT3 project [9], while out-of-domain training
data were linked in the workshop’s website. With
respect to edition 2016 of the evaluation cam-
paign, some of the talks added to the TED repos-
itory during the last year have been used to define
the evaluation sets (tst2017), while the remaining
new talks have been included in the training sets.

Two development sets (dev2010 and tst2010)
are either the same of past editions - when avail-
able - or have been built upon the same talks - for
pairs never proposed in the past.

Table 2 provides statistics on in-domain texts
supplied for training, development and evalua-
tion purposes, averaged on the 20 language pairs.

Concerning the unofficial bilingual task, be-
sides the tst2017 evaluation set, we asked to
translate the progressive tst2016 test set as well.

2.3. Evaluation

Participants had to provide MT outputs of the test
sets in NIST XML format. Outputs had to be
case-sensitive, detokenized and punctuated. The
quality of translations was measured both auto-
matically, against human translations created by
the TED open translation project, and via hu-
man evaluation (Section 5). Case sensitive auto-
matic scores were calculated with the three auto-
matic standard metrics BLEU, NIST, and TER,
as implemented in mteval-v13a.pl1 and tercom-
0.7.252, by calling:

• mteval-v13a.pl -c

• java -Dfile.encoding=UTF8 -jar

tercom.7.25.jar -N -s

Detokenized texts were used, since the two scor-
ing scripts apply their own internal tokenizers.

In order to allow participants to evaluate
their progresses automatically and under identi-
cal conditions, an evaluation server was set up.
Participants could submit the translation of any
development set to either a REST Webservice or
through a GUI on the web, receiving as output
BLEU, NIST and TER scores computed as de-
scribed above.

The evaluation server was utilized by the or-
ganizers for the automatic evaluation of the offi-
cial submissions. After the evaluation period, the

1http://www.itl.nist.gov/iad/mig/tests/mt/2009/
25http://www.cs.umd.edu/ snover/tercom/
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Table 1: List of Participants

FBK Fondazione Bruno Kessler, Italy [2]
GTCT Global Tone Communication Technology Co. Ltd, China[3]
KIT Karlsruhe Institute of Technology, Germany [4]
KYOTO Kyoto University, Japan [5]
RWTH Rheinisch-Westfälische Technische Hochschule, Germany [6]
UEDIN University of Edinburgh, United Kingdom [7]
UDSDFKI Universität des Saarlandes and

Deutsche Forschungszentrum für Künstliche Intelligenz, Germany [8]

Table 2: Average size of bilingual resources
made available for the 20 language pairs of the
multilingual task.

data sent tokens talksset source target
train 160k 3.99M 3.99M 1749
dev2010 940 18,8k 18,8k 8
tst2010 1,660 30,0k 30,0k 11
tst2017 1,146 19,8k 19,8k 10

evaluation of test sets was allowed to all partici-
pants as well.

2.4. Submissions

We received 9 primary multilingual submissions
from 5 different sites, distributed according to
training conditions as follows: 4 on small-data,
4 on zero-shot and 1 on large-data; in addi-
tion, 3 small-data, 2 zero-shot and 1 large-data
contrastive runs were submitted. One out of
those five participants also sent a bilingual run
on Chinese-English, while two other participants
provided their runs on German-English bilingual
task.

The total number of test sets evaluated for the
multilingual task was then 300 (180 primary, 120
contrastive), while as far as the bilingual tasks are
concerned, 12 translations were scored.

2.5. Automatic results

The automatic scores computed on the 2017 of-
ficial test set for each participant are shown in
Appendix A. The two uppermost tables concern
the four zero-shot language pairs, where scores
of all multilingual submissions are provided.

Table 3 reports the automatic scores of the
9 primary multilingual submissions averaged on
the four directions involving the zero-shot con-
dition. Despite being questionable, the average
operation allows to synthesize some general out-
comes in a easier way than looking at the many
tables of the appendix:

• as proved by KYOTO, zero-shot systems

Table 3: Automatic scores of the primary mul-
tilingual submissions averaged on the four zero-
shot language pairs.

system cond. BLEU NIST TER

FBK
ML SD 19.54 5.432 62.81
ML ZS 17.26 5.077 65.29

GTCT ML ZS 19.40 5.343 63.27

KIT
ML SD 20.97 5.716 60.38
ML LD 21.13 5.765 59.77

KYOTO
ML SD 20.60 5.621 61.54
ML ZS 20.55 5.573 61.84

UDSDFKI
ML SD 19.06 5.342 64.26
ML ZS 17.10 5.088 65.81

(“ML ZS”) can well compete with those
trained including data of the language pairs
they are tested on (“ML SD”)

• also other labs were able to develop zero-
shot systems reasonably good with respect
to their best systems, endorsing the general
feasibility of zero-shot translation

• KIT, the only lab that submitted runs for
both small- and large-data conditions, was
able to reach the highest MT quality by
using more data for training, but not by
far. Such performance proximity could be
due to multilinguality, which allows the
weaker condition (SD) to handle sparsity,
problem that does not affect too much the
LD engine. In other words, multilinguality
seems to represent an effective solution to
data sparsity, alternative to the use of large
out-of-domain data sets.

Table 4 reports the automatic scores of the
9 primary multilingual submissions averaged on
the 16 directions other than the zero-shot. For
these directions, the ML ZS systems are not at
all “zero-shot” systems, but simply multilingual
systems trained on parallel data for 16 pairs, in-
cluding that which they are tested on. Therefore,
the table compares multilingual systems trained
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on either 20 or 16 pairs. In one case (FBK) the
ML SD system is better than the ML ZS, in an-
other (KYOTO) it is the opposite, while in the
third case (UDSDFKI) they perform equally; no
general conclusion can be drawn for now but the
issue deserves further investigation.

Table 4: Automatic scores of the primary multi-
lingual submissions averaged on the 16 non zero-
shot language pairs.

system cond. BLEU NIST TER

FBK
ML SD 22.31 5.818 59.89
ML ZS 21.89 5.760 60.36

GTCT ML ZS 24.46 6.112 57.61

KIT
ML SD 24.07 6.139 57.12
ML LD 24.42 6.191 56.56

KYOTO
ML SD 23.73 6.059 58.00
ML ZS 24.10 6.083 57.78

UDSDFKI
ML SD 21.69 5.764 60.75
ML ZS 21.63 5.749 60.89

3. Dialogue Task

3.1. Definition

Despite the recent advances of machine trans-
lation technologies, their effectiveness has not
been investigated well by highly context-
dependent situations such as dialogues. One
typical problem in the translation of dialogues
is the existence of empty categories [10], espe-
cially in pro-drop source languages such as Chi-
nese, Japanese, and Korean. Translating such
empty categories is also problematic other than
dialogues [11], but it becomes very severe in nat-
ural conversations. A past shared task in IWSLT
[12] included translator-assisted dialogues in a
travel domain. A Chinese-English-Japanese cor-
pus related to Olympic games, a.k.a. HIT corpus
[13], which were also used for IWSLT shared
task [14], also included some dialogues in a
travel domain. These travel domain corpora have
been widely used for spoken language translation
studies, but these dialogues are in very limited
situations and not necessarily natural conversa-
tions.

We focus on different types of dialogues
called attentive listening, where a listener lis-
tens to people attentively about what they think.
Conversations in attentive listening are not task-
oriented so it is not easy to assume pre-defined
information that can help to understand and
translate them.

Table 5: Corpus statistics in the numbers of ut-
terances (excluding backchannel and filler ones)
and words. #words is based on tokenization us-
ing KyTea (ja) and Moses tokenizer (en).

#utt. #words (ja) #words (en)
dev. (#1-#5) 1,476 25,780 16,235
test (#6-11) 1,510 31,857 20,099

3.2. Data

In-domain development and test data are based
on the attentive listening corpus developed in
NAIST [15], whose recorded and transcribed di-
alogues were originally in Japanese and then
translated into English. We chose eleven dia-
logues for this task including 2,986 utterances,
excluding 2,904 utterances just with backchannel
and fillers. The translators were asked to trans-
late literally with least supplement of empty cat-
egories by pronouns that were required grammat-
ically. They could also refer to the original dia-
logue transcriptions with backchannel and fillers
for taking the dialogue context into account.

In the recorded dialogues, many participants
spoke Kansai dialect of Japanese. This caused
some difficulties on Japanese morphological
analyses and translation. We conducted rewrit-
ing of such expressions into standard Japanese
by four annotators.

Table 5 shows the statistics of the develop-
ment and test data. Since there are no other in-
domain resources for this task, we did not pro-
vide any training data; participants can use any
external Japanese-English resources.

3.3. Evaluation

Unfortunately we received no submissions for
this task while some task registrations were
made. The development and evaluation data can
be obtained from the evaluation campaign web-
site3 for future studies.

4. Lecture Task

4.1. Definition

The lecture task covered two tracks: ASR and
SLT. In the ASR track, the participants should
transcribe the English and German audio. In the
SLT track, these transcriptions should be trans-
lated into the other language.

3https://sites.google.com/site/iwsltevaluation2017/Dialogues-
task
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4.1.1. Data

The evaluation data for the lecture task (tst2017)
consists of German and English recordings of
talks and lectures.

The English data that participants were asked
to recognize and translate consists in part of TED
talks as in the years before, and in part of real-life
lectures and talks that have been mainly recorded
in lecture halls at KIT and Carnegie Mellon Uni-
versity. TED talks are challenging due to their
variety in topics, but are very benign as they are
very thoroughly rehearsed and planned, leading
to easy to recognize and translate language. The
real-life lectures that we included in the test set
are more difficult to process as reflected by the
scores on them in comparison to the scores on the
TED talks. As this is the first edition in which we
offer real-life lectures, and the amount of avail-
able test data is limited, we included both, TED
talks and real lectures in the English evaluation
data.

The German data consisted solely of German
real-live lectures given at KIT.

4.1.2. ASR

In the ASR track participants were asked to rec-
ognize the unsegmented audio of the lectures and
transcribe them automatically into the spoken
word sequence. The training data for the acous-
tic model was limited to publicly available data,
while the training data for the language model
was restricted to a known list of corpora. But
participants could suggest corpora to include in
the list.

4.1.3. SLT

The SLT track covered the translations of uni-
versity lectures and TED talks from English to
German and the translation of university lectures
from German to English. The participants should
translate from the English and German audio sig-
nal. The challenge of this translation task is the
necessity to deal with automatic, and in general
error prone, transcriptions of the audio signal, in-
stead of correct human transcriptions. Further-
more, for the lecture tasks no manual segmenta-
tion into sentences was provided. Therefore, par-
ticipants needed to develop methods to automati-
cally segment the automatic transcript and insert
punctuation marks.

4.2. Evaluation

Participants to the ASR evaluation had to submit
the results of the recognition of the tst2017 sets
in CTM format. The word error rate was mea-
sured case-insensitive. After the end of the evalu-

ation, scoring was performed with the references
derived from the subtitles of the TED talks and
human transcripts of the real lectures.

For the SLT evaluation, participants could
choose to either use their own ASR technology,
or to use ASR output provided by the conference
organizers.

For both input languages, the ASR output
provided by the organizers was a single system
output from one of the submissions to the ASR
track.

Since the participants needed to segment the
input into sentences, the segmentation of the ref-
erence and the automatic translation was differ-
ent. In order to calculate the automatic evalua-
tion metric, we needed to realign the sentences of
the reference and the automatic translation. This
was done by minimizing the WER between the
automatic translation and reference as described
in [16].

4.3. Submissions

We received two primary submissions for every
SLT task and one primary submission for the
ASR task.

4.4. Results

The detailed results of the automatic evaluation
in terms of BLEU and WER can be found in Ap-
pendix B.

5. Human Evaluation
This year human evaluation focused on Multilin-
gual translation (see Section 2) and was specifi-
cally carried out on the four language directions
for which also the Zero-Shot translation task was
proposed, i.e. NlDe, DeNl, RoIt and ItRo.

For these four tasks, we received multilingual
submissions for all the training data conditions
offered, namely large data (ML LD), small data
(ML SD), and zero-shot (ML ZS). Since multi-
lingual translation was offered for the first time
as an IWSLT task, we were interested in compar-
ing the results with the traditional bilingual (BL)
approach, where a different system is created for
each language direction. For this reason, for the
NlDe and RoIt tasks we asked those teams who
participated with both ML SD and ML ZS runs
to provide additional BL SD runs, to be manually
evaluated as well.

A major novelty with respect to previ-
ous campaigns is that human evaluation was
extended to include two different assessment
methodologies, namely direct assessment (DA)
of absolute translation quality as well as the tra-
ditional IWSLT evaluation based on post-editing
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(PE), where the MT outupts are post-edited (i.e.
manually corrected) by professional translators
and then evaluated according to TER-based met-
rics [17].

We believe that carrying out a double evalua-
tion on the same data adds great value to IWSLT
2017, since it allows to compare complementary
methodologies which address different human
perspectives. Indeed, while DA focuses on the
generic assessment of overall translation quality,
PE-based evaluation reflects a real application
scenario – the integration of MT in Computer-
Assisted Translation (CAT) tools – and directly
measures the utility of a given MT output to
translators. Also, this evaluation is particularly
suitable for performing fine-grained analyses,
since it produces a set of edits pointing to spe-
cific translation errors.

In this year’s campaign, all systems submit-
ted to the NlDe, DeNl, RoIt and ItRo tasks
were officially evaluated and ranked according to
DA, while PE-based evaluation was carried out
on a subset of systems submitted to the NlDe
and RoIt tasks, with the aim of analysing in de-
tail the feasibility of the novel multilingual - and
zero-shot - approach.

The human evaluation (HE) dataset created
for each language direction was a subset of the
corresponding 2017 test set (tst2017). All the
four tst2017 sets (NlDe, DeNl, RoIt and ItRo)
are composed of the same 10 TED Talks, and
around the first half of each talk was included
in the HE set. The resulting HE sets are iden-
tical and include 603 segments, corresponding to
around 10,000 words words for each source text.

In the following subsections we present the
two evaluation methodologies and their out-
comes on the HE datasets.

5.1. Direct Assessment

Recently, there has been increased interest in hu-
man evaluation of machine translation output us-
ing direct assessment (DA). Here, the annotator
sees a simple annotation interface which shows
1) the reference translation, 2) a single candidate
translation, and 3) a slider to score the transla-
tion quality from 1 to 100, focusing on the ade-
quacy of the given translation output, compared
to the given reference translation. For this year’s
IWSLT, we follow the setup of WMT17 [18] and
run a human evaluation campaign based on DA.

Considering that any reference-based ap-
proach to evaluation will inevitably have prob-
lems when the reference translation has quality
issues or a given candidate translation has an ex-
tremely different syntactic structure compared to
the given reference (and might thus be judged as

poor quality), we also focused on source-based
direct assessment. This is more difficult to use as
it requires a pool of bilingual annotators but (if
those annotators are available) it allows to col-
lect annotations on the actual semantic transfer
between source and target languages.

Given that source-based DA eliminates ref-
erence bias and quality issues by design, we
decided to run two separate DA campaigns for
IWSLT, one based on the reference-based imple-
mentation of DA (identical to what has been used
for WMT17) and one based on source-based DA.
We used the Appraise framework [19] for both
campaigns.

5.1.1. Data Preparation

Data was prepared based on the full set of 603
candidate translations used for the post-editing
evaluation. However, as we wanted to ensure
that each task is annotated by two annotators, we
opted to randomly sample half of the candidate
translations for the DA campaigns. Both source-
based and reference-based direct assessment data
has been prepared using the same random seed
so that the only difference between the resulting
tasks is in the type of “visual reference” shown
to the annotator. Display order of segments and
systems is identical across the campaign types.

5.1.2. Annotation Campaign

We collected annotations from a=22 annotators
for NlDe and RoIt. These language pairs con-
tained a total of n=12 different systems and we
conducted the evaluation on t=55 tasks with r=2
redundancy, so that each annotator ended up
completing a total of five tasks. For DeNl and
ItRo there were a total of a=16 annotators for

Table 6: NlDe Source-based DA Human evalua-
tion results showing average raw DA scores (Ave
%) and average standardized scores (Ave z), lines
between systems indicate clusters according to
Wilcoxon rank-sum test at p-level p ≤ 0.05.

# Ave % Ave z System Cond.
1 70.2 0.173 KIT ML LD

2 70.2 0.145 KYOTO BL SD

69.4 0.139 KYOTO ML SD

3 68.1 0.110 KIT ML SD

4 68.4 0.103 KYOTO ML ZS

66.5 0.040 GTCT ML ZS

67.0 0.029 UDSDFKI ML SD

5 64.5 -0.045 FBK BL SD

63.5 -0.078 UDSDFKI ML ZS

63.3 -0.079 FBK ML SD

6 60.0 -0.212 FBK ML ZS

7 57.2 -0.338 UDSDFKI BL SD
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Table 7: NlDe Reference-based DA Human
evaluation results showing average raw DA
scores (Ave %) and average standardized scores
(Ave z), lines between systems indicate clusters
according to Wilcoxon rank-sum test at p-level
p ≤ 0.05.

# Ave % Ave z System Cond.
1 64.2 0.121 KIT ML LD

2 63.5 0.100 KYOTO ML SD

3 64.6 0.102 KYOTO BL SD

4 63.0 0.069 KYOTO ML ZS

62.1 0.061 KIT ML SD

62.7 0.045 UDSDFKI ML SD

61.2 0.014 GTCT ML ZS

5 61.1 0.017 FBK BL SD

6 59.2 -0.076 UDSDFKI ML ZS

58.0 -0.092 FBK ML SD

7 56.2 -0.178 FBK ML ZS

54.9 -0.241 UDSDFKI BL SD

Table 8: RoIt Source-based DA Human evalua-
tion results showing average raw DA scores (Ave
%) and average standardized scores (Ave z), lines
between systems indicate clusters according to
Wilcoxon rank-sum test at p-level p ≤ 0.05.

# Ave % Ave z System Cond.
1 74.8 0.222 KYOTO BL SD

2 74.4 0.200 KIT ML SD

72.1 0.131 KYOTO ML SD

3 72.1 0.136 KYOTO ML ZS

71.8 0.115 KIT ML LD

4 71.1 0.081 UDSDFKI ML SD

70.3 0.049 FBK ML SD

69.1 0.017 GTCT ML ZS

68.5 0.000 FBK BL SD

5 66.9 -0.090 UDSDFKI ML ZS

6 61.6 -0.268 FBK ML ZS

7 55.3 -0.546 UDSDFKI BL SD

n=9 individual systems. We annotated a set of
t=40 tasks, again using r=2 redundancy, for the
same annotator work load of five tasks. Our an-
notators were experienced linguistic consultants.

5.1.3. Results

Table 6 includes source-based DA results for
NlDe and Table 7 shows corresponding results
from the reference-based DA campaign. Clus-
ters are identified by grouping systems together
according to which systems significantly outper-
form all others in lower ranking clusters, accord-
ing to Wilcoxon rank-sum test. Tables 8 and
9 show results for source-based and reference-
based DA for RoIt, respectively. Results for
DeNl and ItRo are given in Tables 10, 11, 12,
and 13.

Table 9: RoIt Reference-based DA Human eval-
uation results showing average raw DA scores
(Ave %) and average standardized scores (Ave
z), lines between systems indicate clusters ac-
cording to Wilcoxon rank-sum test at p-level p ≤
0.05.

# Ave % Ave z System Cond.
1 59.9 0.169 KIT ML SD

2 59.9 0.162 KYOTO ML SD

3 58.9 0.126 KYOTO BL SD

58.6 0.126 KYOTO ML ZS

58.3 0.102 KIT ML LD

4 58.3 0.086 UDSDFKI ML SD

5 55.2 0.014 GTCT ML ZS

55.1 -0.010 FBK ML SD

54.0 -0.045 FBK BL SD

54.0 -0.047 UDSDFKI ML ZS

6 49.0 -0.190 FBK ML ZS

7 42.9 -0.423 UDSDFKI BL SD

Table 10: DeNl Source-based DA Human eval-
uation results showing average raw DA scores
(Ave %) and average standardized scores (Ave
z), lines between systems indicate clusters ac-
cording to Wilcoxon rank-sum test at p-level p ≤
0.05.

# Ave % Ave z System Cond.
1 70.3 0.128 KYOTO ML ZS

2 70.0 0.088 KIT ML LD

3 69.8 0.094 KYOTO ML SD

67.5 0.015 GTCT ML ZS

67.5 -0.002 KIT ML SD

67.4 -0.006 FBK ML SD

4 66.5 -0.022 UDSDFKI ML SD

66.0 -0.073 UDSDFKI ML ZS

5 62.4 -0.180 FBK ML ZS

Note how reference-based DA scores are
generally lower than those for source-based DA.
It seems that given a reference, annotators are
more likely to penalize a candidate translation
for missing data. For the source-based case, they
seem to be more focused on the actual transfer
from source into target language. More detailed
investigation is required to draw conclusions here
and will be left for future work.

Generally, source-based and reference-based
DA produce similar clusters. The decision which
direct assessment to use hence comes down to the
availability of bilingual annotators. If available,
it seems preferable to opt for source-based DA.

For NlDe, KIT (ML LD) wins for both
source-based and reference-based DA, with KY-
OTO (BL SD and ML SD) reaching second and
third place. KIT is significantly better than all
other systems for this language pair. Both DA
methods agree on the ranking of the lower scor-
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Table 11: DeNl Reference-based DA Hu-
man evaluation results showing average raw DA
scores (Ave %) and average standardized scores
(Ave z), lines between systems indicate clusters
according to Wilcoxon rank-sum test at p-level
p ≤ 0.05.

# Ave % Ave z System Cond.
1 57.7 0.126 KIT ML LD

2 57.7 0.119 KYOTO ML SD

56.6 0.090 KYOTO ML ZS

3 54.7 0.004 KIT ML SD

4 54.4 0.009 GTCT ML ZS

53.7 -0.022 UDSDFKI ML SD

53.4 -0.068 UDSDFKI ML ZS

52.6 -0.073 FBK ML SD

5 50.2 -0.156 FBK ML ZS

Table 12: ItRo Source-based DA Human evalua-
tion results showing average raw DA scores (Ave
%) and average standardized scores (Ave z), lines
between systems indicate clusters according to
Wilcoxon rank-sum test at p-level p ≤ 0.05.

# Ave % Ave z System Cond.
1 77.3 0.214 KIT ML LD

76.5 0.189 KYOTO ML SD

75.9 0.173 KIT ML SD

74.7 0.136 KYOTO ML ZS

2 72.6 0.048 UDSDFKI ML SD

3 69.6 -0.070 FBK ML SD

4 68.5 -0.103 UDSDFKI ML ZS

68.1 -0.115 GTCT ML ZS

5 60.4 -0.385 FBK ML ZS

ing systems.
For RoIt, KYOTO (BL SD) wins for source-

based DA while KIT (ML SD) performs best
for the reference-based DA campaign. For
reference-based eval, the KYOTO systems drops
to the third cluster. As average scores are really
close across the reference-based systems, this
should be investigated more. Again, both DA
methods agree on the worst clusters.

For DeNl, we see the ML ZS system from
KYOTO win over an ML LD system from KIT.
While this does not happen for the reference-
based campaign, the ML ZS system achieves sec-
ond place there. This indicates that ML ZS can
be competitive and outperforms the other ap-
proaches.

Finally, for ItRo we observe identical clus-
ters for both DA methods. Of course, average %
scores and z scores differ, but the respective pair-
wise comparisons end up the same. Four systems
achieve first rank: KIT (ML SD and ML LD) as
well as KYOTO (ML SD and ML ZS).

Table 13: ItRo Reference-based DA Human
evaluation results showing average raw DA
scores (Ave %) and average standardized scores
(Ave z), lines between systems indicate clusters
according to Wilcoxon rank-sum test at p-level
p ≤ 0.05.

# Ave % Ave z System Cond.
1 66.1 0.165 KIT ML SD

65.4 0.145 KYOTO ML ZS

65.1 0.142 KIT ML LD

64.2 0.112 KYOTO ML SD

2 61.5 0.021 UDSDFKI ML SD

3 60.0 -0.050 FBK ML SD

4 58.1 -0.095 UDSDFKI ML ZS

58.3 -0.102 GTCT ML ZS

5 54.0 -0.229 FBK ML ZS

5.2. Post-Editing

5.2.1. Evaluation Data

This year, human evaluation based on post-
editing was carried out on two language direc-
tions, namely NlDe and RoIt.

In order to analyze at best the multilingual
approach and to properly compare the different
data conditions tested in the campaign, we se-
lected for post-editing the six runs of the three
teams who submitted both ML SD and ML
ZS systems (i.e. KYOTO, FBK, UDSDFKI). In
addition, we included in the evaluation their three
unofficial BL SD runs that they were requested to
submit for comparison purposes.

For each language direction, the output of the
selected 9 systems on the HE set was assigned
to professional translators to be post-edited (for
all the details about data preparation and post-
editing see [20, 21, 22]).

The resulting evaluation data consists of nine
new reference translations for each of the sen-
tences in the HE set. Each one of these refer-
ences represents the targeted translation of the
system output from which it was derived, while
the post-edits of the other 8 systems are available
for evaluation as additional references.

5.2.2. Results

The outcomes for the two language directions are
presented in Tables 14 and 15, where systems are
grouped by data condition (ML ZS, ML SD, ML
LD, and BL SD). Results are analyzed according
to multi-reference TER (mTER), where TER is
computed against all the 9 available post-edits.
Previous IWSLT PE-based evaluations demon-
strated that mTER allows a more reliable and
consistent evaluation of the real overall MT sys-
tem performance with respect to HTER – where
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TER is calculated against the targeted reference
only.

Furthermore, figures are given for HTER as
well as TER – both on the HE set and on the
full test set – calculated against the official ref-
erence translation used for automatic evaluation
(see Section 2 and Appendix A).4 In the tables,
BL SD runs are highlighted in light gray to distin-
guish them from the official IWSLT runs. Also,
results for those official IWSLT runs that were
not post-edited are given for completeness (i.e.
KIT, GTCT). Those runs are highlighted in dark
gray to signal that they are not directly compara-
ble with the other runs: although they are evalu-
ated with mTER on all nine available references,
they do not have their corresponding targeted ref-
erence, which could result in a penalizing score.

Finally, the statistical significance of the
observed differences between the systems was
assessed with the approximate randomization
method [23], a statistical test well-established in
the NLP community [24] and that, especially for
the purpose of MT evaluation, has been shown
[25] to be less prone to type-I errors than the
bootstrap method [26]. In this study, the approx-
imate randomization test was based on 10,000
iterations. Tables 14 and 15 present the results
of the test focusing on the systems within the
same data condition. Information about the sig-
nificance of the differences between the systems
developed by the same team are given in the fol-
lowing discussion of results.

Table 14: NlDe TED Talk task (HE tst2017):
human evaluation results. Scores are given in
percentage (%). The number next to the mTER
score identifies the system(s) within the same
setup w.r.t. which the difference is statistically
significant at p < 0.01.

Cond. System mTER HTER TER TER
HE Set HE Set HE SetTest Set
9 PErefs tgt PEref ref ref

GTCT 25.36 – 64.40 65.17

ML ZS
KYOTO1 20.33(2,3) 25.72 64.33 64.33
FBK2 26.19 33.13 67.01 67.05
UDSDFKI327.36 33.60 68.65 68.36

KYOTO 20.38(3) 25.05 62.99 63.39

ML SD
FBK 21.68 27.68 65.48 65.25
UDSDFKI 23.94 30.75 66.76 66.34
KIT 21.34 – 62.12 62.56

ML LDKIT 19.03 – 61.08 61.33

KYOTO 20.31(2,3) 26.26 63.61 63.81
BL SD FBK 23.71(3) 30.18 65.34 66.09

UDSDFKI 30.27 37.25 70.72 70.30

4Note that since TER is an edit-distance measure, lower
numbers indicate better performance.

Table 15: RoIt TED Talk task (HE tst2017):
human evaluation results. Scores are given in
percentage (%). The number next to the mTER
score identifies the system(s) within the same
setup w.r.t. which the difference is statistically
significant at p < 0.01.

Cond. System mTER HTER TER TER
HE Set HE Set HE SetTest Set
9 PErefs tgt PEref ref ref

GTCT 26.94 – 61.80 61.11

ML ZS
KYOTO1 22.65(2,3) 29.33 60.58 60.26
FBK2 29.16 37.38 64.21 63.32
UDSDFKI328.74 35.79 64.79 63.97

KYOTO 20.27 27.17 60.14 59.75

ML SD
FBK 20.74 29.01 60.45 59.65
UDSDFKI 23.39 31.25 61.95 60.77
KIT 22.81 – 58.70 58.29

ML LDKIT 22.48 – 58.46 57.87

KYOTO 18.39(2,3) 26.09 58.90 58.55
BL SD FBK 22.69(3) 30.34 61.25 60.73

UDSDFKI 26.73 34.85 61.74 63.40

Looking at the tables, some conclusions can
be drawn about the feasibility of multilingual
MT. It is interesting to note that the same con-
siderations hold across language directions – al-
though to varying degrees. First of all, the im-
pressive results of ML SD runs show that mul-
tilingual systems are indeed an effective alter-
native to traditional bilingual systems. Even
more noticeably, ML ZS systems are able to
reach a reasonably good quality also when faced
with such an extreme translation scenario, clearly
showing the feasibility of the zero-shot approach.
Finally, by comparing the systems’ performance
within each condition, some specific characteris-
tics of the ML and BL approach emerge. As we
can see in the tables, the three BL SD systems
are all significantly different, while ML SD sys-
tems (and ML ZS, although to a lesser extent) are
mostly similar to each other.

We now compare in detail the systems pro-
duced by each team in the different condi-
tions. Considering the NlDe direction (Table
14), KYOTO provides the clearest demonstra-
tion of the feasibility of the multilingual zero-
shot approach, since it obtains the same outstand-
ing results in all the three translation conditions.
FBK and UDSDFKI systems show a very simi-
lar behaviour. They further confirm the effec-
tiveness of the multilingual approach, since their
ML SD runs improve over their corresponding
BL SD runs, and with a statistically significant
difference. As for zero-shot translation, FBK and
UDSDFKI systems still show a reasonably good
quality, although results are significantly lower
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than those obtained in the ML SD data condition
(+4.51 mTER points for FBK and +3.42 for UDS-
DFKI). With respect to the BL SD runs, UDS-
DFKI ML ZS performance is higher (though the
difference is not statistically significative), while
FBK ML ZS results are significantly lower.

Regarding non-comparable runs (in dark grey
in the table), we see that the ML ZS system de-
veloped by GTCT is in line with the other re-
sults. As for KIT, its performance on the ML
LD data condition confirms that using more data
for training can help improving results. However,
the difference with respect to its corresponding
ML SD system is not particularly remarkable, al-
though statistically significant.

It is worthwhile to note that the differences
between systems highlighted by mTER scores
are not so marked when looking at TER scores.
As also shown in previous IWSLT evaluations,
TER calculated against one independent refer-
ence does not allow to discriminate properly be-
tween systems; this study supports once more the
need for human evaluation to shed light on the
peculiarities of the systems.

Considering the RoIt language direction
(Table 15), we can draw the same conclusions
about the feasibility of the multilingual approach,
although results for the zero-shot task are less
notable. KYOTO ML SD system is not signifi-
cantly different from the traditional BL SD sys-
tem, even though it does not reach its perfor-
mance. On the contrary, results for ML ZS sys-
tem are significantly lower than those obtained
by the ML SD one, although the difference is only
2.38 mTER points.

As seen for the NlDe direction, FBK and
UDSDFKI ML SD runs significantly improve
over their corresponding BL SD runs; however,
for the RoIt direction the drop in performance
of the ML ZS systems with respect to the ML
SD ones is more critical (8.42 mTER points for
FBK and 5.35 for UDSDFKI). Also, ML ZS runs
are worse than BL SD runs, even though for UDS-
DFKI the difference is not statistically signifi-
cant.

5.3. Future Work

We intend to run a deeper analysis on the hu-
man evaluation corpus created as part of IWSLT.
Not only does it make sense to more closely
investigate the differences of source-based and
reference-based DA, but it will also be very in-
teresting to compare the results of such “general
quality focused” annotation work to more tar-
geted approaches such as post-editing. As we do
have such data for two of the language pairs, the
resulting three-way dataset will be released for

future research.

6. Conclusions
This year the IWSLT Evaluation Campaign fea-
tured three tasks: the Multilingual task, evalu-
ating single MT systems translating across mul-
tiple languages, the Dialogues task, address-
ing MT of human-to-human dialogues, and the
Lecture task, targeting speech transcription and
translation of real-life university lectures. This
paper overviews the structure of each task, its
experimental conditions, the training and eval-
uation data made available, and reports on its
participation and main outcomes. Besides doc-
umenting the evaluation campaign to the perusal
of the workshop participants, we hope that this
paper will also be useful to researchers and prac-
titioners interested in using our evaluation bench-
marks in the future.
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Appendix A. Automatic Evaluation for the Multilingual Task
· Table scores refer to the official testset (tst2017.mltlng)
· BLEU and TER scores are given as percent figures (%)
· ML, BL, SD, LD and ZS stand for multilingual, bilingual, small-data, large-data and zero-shot conditions, respectively
· BL SD systems were developed by three participants on explicit request of the organizers for comparison purposes

system cond. BLEU NIST TER BLEU NIST TER

Dutch-German German-Dutch
ML SD 18.59 5.177 65.24 19.16 5.583 61.45

FBK ML ZS 16.96 4.931 67.04 17.17 5.297 63.25
BL SD 17.93 5.139 66.09 – – –

GTCT ML ZS 19.00 5.208 65.17 19.59 5.565 61.27

KIT
ML SD 20.47 5.542 62.56 19.77 5.735 59.37
ML LD 21.06 5.657 61.33 20.00 5.763 59.21
ML SD 20.27 5.487 63.39 19.64 5.733 60.24

KYOTO ML ZS 19.68 5.368 64.33 20.31 5.751 59.99
BL SD 19.50 5.390 63.81 19.86 5.754 59.93
ML SD 18.28 5.133 66.34 18.96 5.492 63.50

UDSDFKI ML ZS 16.28 4.874 68.36 17.38 5.375 62.72
BL SD 16.43 4.767 70.30 – – –

Dutch-Italian Italian-Dutch

FBK
ML SD 19.33 5.471 62.88 20.27 5.568 61.78
ML ZS 19.76 5.422 62.99 20.00 5.548 61.91

GTCT ML ZS 21.21 5.722 60.84 21.80 5.784 60.09

KIT
ML SD 20.41 5.599 61.64 22.14 6.005 58.34
ML LD 20.94 5.706 60.18 21.95 6.003 58.21

KYOTO
ML SD 19.86 5.530 62.07 22.32 5.922 59.16
ML ZS 20.74 5.602 61.85 22.76 5.911 59.16

UDSDFKI
ML SD 19.12 5.419 63.69 20.08 5.560 62.02
ML ZS 19.39 5.435 63.68 19.88 5.563 61.92

English-Dutch Dutch-English

FBK
ML SD 26.72 6.536 53.45 29.79 7.078 50.27
ML ZS 26.11 6.501 54.34 30.04 7.081 50.04

GTCT ML ZS 29.08 6.805 51.47 32.78 7.422 47.35

KIT
ML SD 29.15 6.903 51.08 31.79 7.340 47.84
ML LD 30.22 6.984 50.45 31.95 7.399 46.88

KYOTO
ML SD 28.80 6.824 52.16 30.49 7.131 49.04
ML ZS 30.18 6.963 50.71 30.63 7.158 48.94

UDSDFKI
ML SD 26.49 6.529 53.72 29.53 7.112 49.64
ML ZS 26.37 6.534 54.19 29.69 7.073 50.03

English-Italian Italian-English

FBK
ML SD 29.60 6.821 50.74 34.24 7.618 44.45
ML ZS 28.86 6.687 51.80 34.16 7.638 44.38

GTCT ML ZS 32.84 7.222 47.63 37.84 8.100 41.06

KIT
ML SD 32.04 7.147 48.36 36.30 7.945 41.97
ML LD 32.32 7.219 48.11 36.46 7.980 41.89

KYOTO
ML SD 30.79 6.921 50.48 34.73 7.631 45.07
ML ZS 30.99 6.989 49.69 35.28 7.679 44.51

UDSDFKI
ML SD 29.62 6.855 50.48 33.77 7.644 44.07
ML ZS 29.68 6.849 50.55 33.77 7.596 44.71

German-Italian Italian-German

FBK
ML SD 16.84 5.094 65.67 16.88 4.92 68.38
ML ZS 16.28 4.971 66.76 16.13 4.828 69.22

GTCT ML ZS 18.56 5.363 63.44 18.09 5.091 67.28

KIT
ML SD 17.79 5.265 63.81 19.32 5.344 64.71
ML LD 18.04 5.280 63.01 19.85 5.414 64.16

KYOTO
ML SD 17.54 5.262 64.32 19.10 5.339 64.73
ML ZS 17.67 5.227 64.77 19.20 5.287 65.31

UDSDFKI
ML SD 16.66 5.096 66.12 16.48 4.870 69.15
ML ZS 16.73 5.106 66.09 16.27 4.873 68.79

system cond. BLEU NIST TER BLEU NIST TER

Italian-Romanian Romanian-Italian
ML SD 19.06 5.155 64.87 21.34 5.811 59.65

FBK ML ZS 16.58 4.783 67.53 18.32 5.296 63.32
BL SD – – – 21.71 5.776 60.73

GTCT ML ZS 18.62 5.027 65.54 20.39 5.573 61.11

KIT
ML SD 21.08 5.566 61.31 22.54 6.0209 58.28
ML LD 21.09 5.629 60.68 22.35 6.013 57.87
ML SD 20.60 5.446 62.76 21.89 5.820 59.75

KYOTO ML ZS 20.37 5.385 62.79 21.85 5.789 60.26
BL SD – – – 23.14 6.026 58.55
ML SD 17.77 5.001 66.40 21.22 5.743 60.77

UDSDFKI ML ZS 16.07 4.752 68.21 18.67 5.352 63.97
BL SD – – – 18.94 5.345 63.40

Dutch-Romanian Romanian-Dutch

FBK
ML SD 16.54 4.759 68.32 18.92 5.396 63.48
ML ZS 15.88 4.698 68.57 17.72 5.272 64.51

GTCT ML ZS 18.11 4.966 66.55 20.02 5.586 61.87

KIT
ML SD 17.43 5.067 64.98 19.28 5.674 60.93
ML LD 17.52 5.103 64.48 19.19 5.645 61.10

KYOTO
ML SD 17.65 5.055 65.84 20.24 5.745 60.90
ML ZS 17.74 5.056 65.75 20.47 5.699 61.14

UDSDFKI
ML SD 14.83 4.529 71.33 17.58 5.281 65.16
ML ZS 14.93 4.532 71.79 17.26 5.286 64.44

English-German German-English

FBK
ML SD 20.88 5.501 63.50 25.62 6.528 54.05
ML ZS 20.67 5.471 63.80 25.22 6.453 54.54

GTCT ML ZS 23.08 5.861 60.63 28.04 6.851 51.42

KIT
ML SD 23.86 6.029 59.22 26.76 6.694 52.43
ML LD 25.49 6.212 57.75 27.47 6.803 51.26

KYOTO
ML SD 23.25 5.924 60.23 26.45 6.609 52.65
ML ZS 23.63 5.936 60.22 27.08 6.678 52.49

UDSDFKI
ML SD 20.63 5.535 63.37 24.75 6.445 54.74
ML ZS 20.20 5.504 63.49 24.54 6.442 55.22

English-Romanian Romanian-English

FBK
ML SD 21.95 5.600 61.40 28.93 6.964 49.91
ML ZS 21.54 5.575 61.41 28.52 6.925 50.57

GTCT ML ZS 23.89 5.906 58.81 31.79 7.368 47.22

KIT
ML SD 25.09 6.132 56.92 30.71 7.208 48.18
ML LD 25.25 6.133 56.95 30.69 7.242 48.01

KYOTO
ML SD 24.66 6.059 57.70 29.58 7.063 49.10
ML ZS 24.49 6.073 57.16 30.23 7.102 48.78

UDSDFKI
ML SD 20.35 5.425 63.30 27.99 6.877 51.44
ML ZS 20.25 5.353 63.99 28.25 6.902 51.09

German-Romanian Romanian-German

FBK
ML SD 14.62 4.479 70.96 15.87 4.762 69.04
ML ZS 13.93 4.400 71.10 15.47 4.695 69.87

GTCT ML ZS 16.23 4.689 69.04 17.95 5.057 67.03

KIT
ML SD 14.99 4.690 67.59 18.01 5.181 66.01
ML LD 15.31 4.737 67.12 18.14 5.198 65.44

KYOTO
ML SD 16.27 4.794 68.08 17.94 5.135 66.44
ML ZS 16.08 4.822 67.76 18.40 5.152 66.24

UDSDFKI
ML SD 13.89 4.381 72.13 15.30 4.667 71.66
ML ZS 13.83 4.287 72.97 15.01 4.652 71.37
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Appendix B. Automatic Evaluation for the Lecture Task

ASR: Talk English and German
Results in Word Error Rate (WER)
German English

Testset KIT Testset KIT

lecture 01 16.6 lecture 01 9.9
lecture 03 33.8 lecture 02 11.7
lecture 04 22.7 ted 2403 6.6

ted 2429 10.6
ted 2438 6.6
ted 2439 15.5
ted 2440 4.1
ted 2442 6.7
ted 2447 6.0
ted 2507 6.2

All lectures 22.8 All lectures 10.3
All ted – All ted 7.7

All 22.8 All 8.5

SLT: Lecture translation task
Results in BLEU

German - English English - German
Testset KIT UEDIN Testset KIT UEDIN

lecture 01 17.31 18.86 ted 2403 18.67 16.48
lecture 03 7.66 8.39 ted 2413 17.06 13.91
lecture 04 15.32 17.58 ted 2429 23.87 16.17

ted 2438 17.14 8.05
ted 2439 14.95 8.71
ted 2440 13.52 13.28
ted 2442 20.89 16.30
ted 2447 11.59 7.73
ted 2478 17.67 12.69
ted 2507 16.64 14.15
lecture 01 23.40 23.56
lecture 02 18.75 22.70

All 12.50 13.99 ALL 18.59 15.98
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Abstract

This paper describes the UdS-DFKI participation to the mul-
tilingual task of the IWSLT Evaluation 2017. Our approach
is based on factored multilingual neural translation systems
following the small data and zero-shot training conditions.
Our systems are designed to fully exploit multilinguality by
including factors that increase the number of common ele-
ments among languages such as phonetic coarse encodings
and synsets, besides shallow part-of-speech tags, stems and
lemmas. Document level information is also considered by
including the topic of every document. This approach im-
proves a baseline without any additional factor for all the
language pairs and even allows beyond-zero-shot translation.
That is, the translation from unseen languages is possible
thanks to the common elements —especially synsets in our
models— among languages.

1. Introduction
Neural machine translation systems (NMT) are currently the
state of the art for most language pairs [1] and, among other
advantages with respect to other paradigms, they can be eas-
ily extended to multilingual systems (ML-NMT) [2, 3]. ML-
NMT systems usually use a common vocabulary where some
words are shared and, more importantly, they project all the
languages into the same embedding space clustering sen-
tences according to their meanings. However, the clustering
is not perfect and especially distant languages or those with
fewer data are more difficult to group by semantics [4].

With the aim of facilitating the semantic clustering of
languages, we enrich words with several levels of annota-
tion. The highest level of annotation is represented by Babel
synsets. BabelNet (BN) is a multilingual semantic network
connecting concepts via synsets [5]. Each concept, or word,
is identified by its ID irrespective of its language, effectively
turning these IDs interlingua. At a lower level, we start from
the premise that languages, especially within families, share
roots that have evolved with time. We use stems and lemmas
to capture common roots and phonetic coarse encodings for
phonetic similarities.

On the other hand, we also take advantage of the coher-
ent structure of the training data composed by a collection of
TED talk transcriptions in several languages. We inform the

system about the topic of every word according to the doc-
ument it belongs to, expecting to improve lexical selection
in this way. Previous research modifies a standard encoder-
decoder architecture to deal with extra-sentence information
[6, 7]. Here we take the opposite approach and modify (an-
notate) the data in order to capture relevant knowledge.

Technically, we include all the aforementioned informa-
tion as factors in a ML-NMT system. Following [8], each
feature has its own word vector which is concatenated to the
BPE’d token vectors to build the hidden states. So, when in-
cluding factors in the source representation of a token, every
source token embedding has the top-k elements describing
the distribution of the word and the remaining elements de-
scribing other features.

This is not the first time that linguistic factors are used in
NMT. We use the implementation in [8], but also the authors
in [9, 10] use part of speech tags and grammatical informa-
tion in their systems. However, to our knowledge, this is the
first time that factors are designed to try to reduce distances
between different source languages and therefore to mimic
the effect of having a larger corpus. Also, BPE subunits are
expected to be more descriptive since semantic information
of the complete word is added to its representation. A vocab-
ulary expansion is naturally produced by the concatenation
of the different features. Our approach specifically targets
multi- and interliguality in translation and, as an extreme ef-
fect, we show how beyond-zero-shot translation can be pos-
sible, that is, the translation from unseen source languages
thanks to interlingual factors.

The rest of the paper is organised as follows. Section 2
describes all the factors used in this work and which tools
and methodologies we use to obtain them. In Section 3 we
analyse the characteristics of the training corpus with respect
to these factors. Section 4 briefly describes the parameters
of the ML-NMT systems and Section 5 reports the results in
the small data and zero-shot training conditions. Finally, we
summarise and draw our conclusions in Section 6.

2. Linguistic and Semantic Annotations
Coarse-Grained Part of Speech (p). We use a
coarse-grained part-of-speech (PoS) tag set with
10 elements: {NOUN, VERB, PREPOSITION,
PRONOUN, DETERMINER, ADVERB, ADJECTIVE,
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Table 1: Statistics for the number of elements in the monolingual TED corpora (all, top block; unique, bottom block). Mono-
lingual corpora have been built as the concatenation of all the parallel counterparts eliminating duplicates.

West Germanic Languages Latin Languages

en de nl ro it es fr

Sentences 545,270 303,668 444,287 225,980 513,693 151,631 140,717
Tokens 9,768,374 5,148,199 6,894,438 3,732,679 8,367,940 2,494,336 2,473,040

uToken 141,013 221,459 187,148 213,670 200,697 148,366 131,015
uLemma 73,048 101,003 85,846 72,535 52,525 52,052 53,088
uStem 50,128 94,126 85,560 54,227 44,691 35,307 40,504
uM3 57,630 79,029 60,534 30,576 32,828 31,840 32,234
uBN 28,445 34,022 27,720 24,375 27,172 23,567 23,856

Table 2: Coverage of the different subcorpora (in %) by the common elements among the languages. The number in parenthesis
shows the absolute number of common elements.

Germanic Latin ALL SMALL ZERO

Token 40% (17,185) 32% (11,690) 30% (8,279) 30% (13,150) 32% (13,150)
Lemma 56% (14,576) 37% (9,096) 40% (7,922) 41% (11,835) 43% (11,835)
Stem 57% (12,029) 52% (8,114) 46% (4,971) 45% (7,452) 47% (7,452)
M3 87% (9,961) 87% (8,164) 84% (5,922) 69% (7,506) 70% (7,506)
BN 15% (5,507) 27% (6,104) 12% (2,367) 12% (3,291) 12% (3,291)

CONJUNCTION, ARTICLE, INTERJECTION}. This
tag set is defined so as to be compatible with the one in the
BabelNet ontology, so this set does not exactly correspond
to the Universal Part-of-Speech Tagset [11] although the
granularity is similar. We use the IXA pipeline [12] to
annotate English, German, Spanish and French documents
with PoS and TreeTagger [13] for Dutch, Romanian and
Italian. The original tags are then mapped to our common
reduced tagset1.

Lemma (l). As with PoS, we use the IXA pipeline for
English, German, Spanish and French; and TreeTagger for
Dutch, Romanian and Italian.

Stem (s). Stems are obtained with the Snowball API
which implements the Porter algorithm [14].

Approximate Phonetic Encoding (m). We use a pho-
netic algorithm to encode words by their pronunciation. The
purpose is to bring close languages together by taking advan-
tage of similar pronunciations in a similar way lemmas and
stems do for close spellings. Phonetic algorithms that pro-
vide a coarse encoding of a word are more appropriate for
this task than the real phonetic transcription which would be
too discriminative.

Phonetic algorithms like Soundex [15] or Meta-
phone [16] are usually developed for a particular language
with possible adjustments to deal with specific features of
another one such as matching names. As an approximation,
in our experiments we use Metaphone 3 for English on all

1The mappings and the full annotation pipeline can be obtained here:
https://github.com/cristinae/BabelWE

the languages. Metaphone 3 (M3) is a phonetic algorithm
that takes into account irregularities in English coming from
several languages including Germanic and Latin ones. As
generic features, the encoding converts all the initial vowels
into an A and pairs of unvoiced and voiced consonants are
encoded by the same letter. The algorithm is commercially
available also for Spanish and German, but the only open
source resource that we know of is for the English version2.

Babel Synset (b). BabelNet [5] is a multilingual seman-
tic network connecting concepts via Babel synsets. We en-
rich TED data content words with their synset information.
For this, we select (i) nouns (including named entities, for-
eign words and numerals), (ii) adjectives, (iii) adverbs and
(iv) verbs following the mappings to our coarse-grained part-
of-speech tags. In addition, we explicitly mark negation par-
ticles with a tag NEG and include them here to account for
their semantics.

A word can have several Babel synsets. We retrieve a
synset according to the lemma and PoS of a word. In case
there is still ambiguity, as it is in most of the cases, we se-
lect the BabelNet ID as the first ID according to its own
sorting: (a) puts WordNet synsets first; (b) sorts WordNet
synsets based on the sense number of a specific input word;
(c) sorts Wikipedia synsets lexicographically based on their
main sense.

Topic (t). TED talks are tagged with a set of English
keywords that describe the topic of a document. Topic infor-
mation can be relevant under two points of view: (i) given

2Metaphone 3 is available within the OpenRefine tool, https://
github.com/OpenRefine/OpenRefine
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Table 3: Characterisation of the 20 topics learned with a BTM system. The percentage and absolute value of documents in the
training corpus of every topic is shown together with the top-5 keywords that describe them.

Label Proportion Top-5 keywords

t1 10.6% (206) science (6.5%) biology (5.6%) health (3.9%) medical research (3.9%) medicine (3.8%)
t2 10.0% (193) culture (6.6%) entertainment (5.9%) technology (5.8%) design (5.3%) business (4.1%)
t3 8.2% (160) culture (5.2%) entertainment (4.8%) art (4.0%) storytelling (3.1%) humor (3.1%)
t4 7.3% (141) brain (7.3%) science (5.8%) neuroscience (5.3%) psychology (5.1%) mind (5.0%)
t5 6.6% (128) global issues (5.0%) future (3.9%) society (3.9%) government (3.7%) politics (3.6%)
t6 6.6% (127) environment (6.0%) science (5.0%) ecology (4.2%) plants (4.1%) nature (3.9%)
t7 6.0% (116) technology (9.2%) computers (5.5%) design (4.7%) Internet (3.5%) TEDx (3.1%)
t8 5.9% (113) technology (6.0%) environment (5.5%) science (4.7%) sustainability (4.6%) global issues (4.6%)
t9 5.3% (102) science (7.1%) animals (5.4%) environment (5.0%) oceans (4.6%) biodiversity (4.5%)

t10 4.7% (90) global issues (10.9%) politics (6.8%) war (5.8%) culture (4.8%) TEDx (4.0%)
t11 4.2% (81) design (9.5%) technology (8.6%) invention (7.5%) innovation (5.8%) creativity (4.4%)
t12 4.0% (78) global issues (9.2%) business (9.0%) economics (6.9%) culture (5.6%) Africa (4.5%)
t13 4.0% (77) science (9.8%) technology (6.5%) space (6.1%) universe (5.7%) astronomy (5.4%)
t14 3.9% (77) health (10.6%) healthcare (8.9%) medicine (8.2%) science (6.5%) technology (4.8%)
t15 3.7% (72) technology (7.0%) science (6.4%) biology (4.2%) design (3.7%) robots (3.7%)
t16 2.7% (53) women (7.3%) social change (5.7%) culture (5.1%) education (5.0%) activism (5.0%)
t17 2.1% (40) design (13.5%) cities (10.1%) architecture (8.1%) art (4.9%) infrastructure (4.2%)
t18 1.8% (35) music (14.7%) performance (13.8%) entertainment (12.9%) live music (10.2%) piano (3.6%)
t19 1.2% (24) work (7.5%) business (5.6%) motivation (5.4%) personal growth (5.3%) success (4.4%)
t20 1.2% (23) culture (12.9%) religion (9.5%) global issues (8.0%) philosophy (5.6%) science (5.1%)

a document, it is shared across languages, so it can help
the NMT system to locate together in the embedding space
the same sentence across languages, and (ii) it may improve
document-level translation since it can help to disambiguate
word translations according to its topic.

With a total of 390 different keywords and a mean of 6.5
per document, considering all of them as input information
for the NMT system would lead to too much diversity. Be-
sides, some keywords such as technology, science, culture
or global issues are very frequent and could put in irrelevant
information. Therefore, we decided to learn a topic model
on the keywords and tag each document with a single inter-
lingua label. Since a document is then only the short set of
keywords in English, we apply a monolingual biterm topic
model (BTM) for short texts [17] for the purpose.

As an alternative, we also apply polylingual topic mod-
els learned with Mallet [18] on all documents using the full
vocabulary. However, after inferring the topic of each doc-
ument, we obtained a mixture of top-k topics that did not
allow a unique labelling of the same document across lan-
guages and the use of a single label would not be an interlin-
gua tag as desired. Since keywords are always available for
TED talks we used the first approach.

3. Corpus Characteristics
We use the corpus provided for the IWSLT 2017 multilin-
gual task [19]. It comprises transcripts and manual transla-
tions of the TED talks accessible on April 26th, 2017. Two
sets, dev2010 and tst2010, are available for validation and
testing purposes. The corpus includes documents in five lan-
guages, en-de-ro-it-nl, summing up to 9161 talks. The in-
tersection of talks among languages is high, 7945 documents
are common to all of them. In addition, we also use TED

talks in French and Spanish obtained from previous IWSLT
campaigns3. This data is not used for training, but we include
them in the analysis of the corpus because in a subsequent
section we explore the translation from unseen languages.

Table 1 shows the general statistics of the TED corpus
by language. Languages are divided into two families: West
Germanic with en, de and nl, and Latin with ro, it, es and
fr. Notice that en, ro and it have significantly more sen-
tences and that could benefit the translation from/to these lan-
guages, but the number of unique tokens (uToken) is quite
homogeneous with the exception of fr and es.

The number of unique elements in the corpus decreases
when going from words, to lemmas, stems, M3 encodings
and BN synsets. The only exception is en, where we ob-
tain more unique M3 encodings than stems. The number of
unique elements is an indication of the ambiguity given by
the factor: words are the least ambiguous linguistic factor
but too many to be fully covered by the vocabulary of ML-
NMT systems, and M3 encodings are the most ambiguous
elements up to the point that they frequently erase the dif-
ferences between unrelated words. In English, anyone and
union share the same M3 encoding ANN but not the mean-
ing. The same encoding applies to the German words eine
and ihnen or the Italian ones unione or annoiano, some
of them are translations, some of them not. BN synsets are
not directly comparable because they are only obtained for a
subset of PoS tags.

Our main interest is to observe the intersection of these
elements in different languages. Table 2 reports the percent-
age of a corpus that is covered by the common elements
among all the languages that build up such corpus. We show
these figures for five corpora: Germanic including en, de and

3https://wit3.fbk.eu/mt.php?release=2014-01
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Figure 1: Percentage of TED corpora covered by the com-
mon elements in a language pair. A cell represents the lan-
guage pair row–column, with the coverage of row language
given by the bottom subcell and the coverage of the column
language given by the upper subcell.
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nl 27
24

33
26
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(d) Babel synsets

nl; Latin with ro, it, es and fr; ALL with the sum of Ger-
manic and Latin; and SMALL and ZERO with the languages
considered for the multilingual translation task en, de, nl,
ro and it. In general, Germanic languages share more vo-
cabulary (tokens, lemmas and stems) than Latin languages;
the disparity in lemmas is more marked in Latin languages:
whereas 9, 096 common lemmas cover only a 37% of the cor-
pus, 8, 114 common stems cover a 52% of it. It is remarkable
to notice the percentage of common vocabulary in the ALL
corpus (30% for tokens, 40% for lemmas and 46% for stems).

These high values justify their usage in multilingual systems.
M3 encodings clearly show an excess of ambiguity: 87%

of the Germanic and Latin corpora are covered by the com-
mon encodings, 70% of the SMALL and ZERO ones. Still,
since the information is complementary to the previous el-
ements, we employ it in the translation systems. Finally,
the percentage of common BN synsets is higher for the Ro-
mance languages (27% vs. 15%). Joining all the languages
together decreases this to 12%. Differently to the other fac-
tors, BN synsets only cover 4 out of the 10 PoS tags. Besides,
they suffer from a sense effect: whereas investigación in
Spanish and investigation in English share stem and M3
encoding, the top BabelNet ID is bn:00067280n for Span-
ish and bn:00047355n for English because the first sense of
the word in the two languages is different.

Figure 1 shows the equivalent analysis per language pair.
Notice that the English corpus is the best covered by com-
mon lemmas, stems and M3 encodings and that differences
between languages can be large, especially when English is
involved. According to these numbers, this is the language
least rich in lemmas, stems and diversity of pronunciations.

Finally, we analyse the data according to their theme. To
do so, we infer the most probable topic for each document
with a BTM model learned for 20 topics, so that each topic
is the main topic of at least 1% of the training documents.
Table 3 shows the characterisation of each topic and the per-
centage of the corpus described by them. Note that although
the extracted topics define different themes, they share key-
words. In other words, the diversity in the TED talks is low
and themes are close to each other.

4. NMT Systems
Our system is a many-to-many NMT engine trained with
Nematus [20]. As done in [3] and similarly to [2], the en-
gine is trained on parallel corpora for the several language
pairs simultaneously, 16 pairs for the zero-shot training con-
dition (ZERO) and 20 for the small data training condition
(SMALL), with the only addition of a tag in the source sen-
tence to account for the target language “<2trg>”. SMALL
includes all the pairs generated from the en-de-ro-it-nl lan-
guages and ZERO excludes the de-nl and it-ro pairs. In
both cases, we only consider those sentences with less than
50 tokens for training, that is 2.113.917 parallel sentences
(39.393.037 tokens) in the first case, 1.692.594 sentences
(31.671.455 tokens) in the second one.

We consider each token in a source sentence to be repre-
sented by (a subset of) the features introduced in the previous
sections. The final representation of a word is the concatena-
tion of all its features. This has been named factored transla-
tion by their similarities with factored translation in statisti-
cal machine translation [21] and we use the implementation
available in Nematus [8]. The same work [8] explores the
inclusion of PoS and subword tags, morphological features,
lemmas and syntactic dependency labels as input features for
bilingual NMT systems involving, en, de and ro. Here, we
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Table 4: Dimensions per factor in the final word embedding
for the systems shown in the most-left column.

token PoS lemma stem M3 BN topic
w p l s m b t

w 506 0 0 0 0 0 0
wl 300 0 206 0 0 0 0
ws 300 0 0 206 0 0 0
wm 300 0 0 0 206 0 0
wb 300 0 0 0 0 206 0
wt 496 0 0 0 0 0 10
wpsm 300 6 0 100 100 0 0
wpsmb 275 6 0 75 75 75 0
wpsmt 290 6 0 100 100 0 10
wpsmbt 265 6 0 75 75 75 10

extend the model to use more generic factors such as stems
and M3 encodings, and interlingual factors such as Babel
synsets. The next example shows a truecased phrase anno-
tated with token|PoS|stem|M3|BN in English and German:

en: that|DETERMINER|that|0T|-
’s|VERB|’s|S|bn:00083181v the|DETERMINER|the|0|-
problem|NOUN |problem|PRPLM |bn:00048242n
de: das|PRONOUN|das|TS|-
ist|VERB|ist|AST|- das|DETERMINER|das|TS|-
Problem|NOUN |probl|PRPLM |bn:00048242n

where boldface emphasises differences and boldface plus
italics emphasises similarities. The examples belong to two
close languages that share vocabulary and roots. How-
ever, problem and Problem would not match with-
out the information on PoS, M3 encoding and BN
synset. The example displays other characteristics
such as differences of PoS between languages (DETER-
MINER vs. PRONOUN) for that/das, or lacking BN
synset in a language. Differences in the retrieved BN
sense are not seen here but should also be consid-
ered (portrait|NOUN|portrait|PRTRT|bn:00063682n vs.
Porträt|NOUN|porträt|PRTRT|bn:00063683n).

All our systems employ a common vocabulary of 150K
tokens plus 2K for subword units segmented using Byte Pair
Encoding (BPE) [22]. Subwords in the source sentence are
annotated with the same factors as the complete word has. As
for the parameters, we use a learning rate of 0.0001, Adadelta
optimisation, 800 hidden units, a mini-batch size of 100, and
drop-out only for hidden layers and input embeddings. We
also tie the embeddings in the decoder side to reduce the size
of the translation models. The dimension of the word em-
beddings is always 506, but every model has a different dis-
tribution of the dimensions per factor. We refer the reader
to Table 4 to see the distribution, where models are named
using the letters that represent the factors included.

5. Results and Discussion
Below we report the translation performance for several sys-
tems under the small data and zero-shot training conditions.

We evaluate systems that combine word tokens (w) with the
individual linguistic or semantic factors (wp, wl, ws, wm,
wb and wt) and the combination of additional factors (wpsm,
wpsmb, wpsmt and wpsmbt). As BabelNet was not within
the allowed resources, our submissions for both training con-
ditions were: wpsm (primary, SUB1) and wpsmt (SUB2)
and wpsmbt (SUB3) as contrastive.

Results are broken down according to the training con-
dition and language pair: Table 5 shows the BLEU scores
on truecased and tokenised translations under the zero-shot
training condition and Table 6 shows the equivalent under
the small one. First of all, we obtain the results for three
different decoding settings on our baseline with only words:
two beam sizes, 5 (w5) and 10 (w10); and an ensemble with
the last four models with a beam size of 10 (w). Increas-
ing the beam size is the major source of improvement (1.5
BLEU points on the concatenated test set), and this number
is further increased by the ensemble up to 2.4 BLEU points.
We analyse the effect of the designed factors over this strong
baseline. Since conclusions are analogous, the most detailed
analysis is only reported for the zero-shot training condition.

Notice that the global BLEU score for SMALL systems
is better than for ZERO mainly because of the zero-shot pairs
de-nl and it-ro. For the other pairs, the enlargement of the
multilingual corpus is even harmful both in a baseline with
only words and with factored models. When considering the
performance of the systems on all the languages simultane-
ously, the best system is the one exploiting all the features
(wpsmbt), with a BLEU of 25.46 for ZERO and 25.72 for
SMALL. These scores are close to but below our primary
submission (25.38 for ZERO and 25.70 for SMALL) which
does not consider BN synsets or topic labels.

In general and for most language pairs, BN synsets are
the only factor that is able to produce translation improve-
ments by itself, the other ones are in average below the base-
line but help to break degeneracies when combined and pro-
duce a beneficial effect. PoS tags also achieve a small im-
provement, but it is non-significant and much less than the
one obtained by the authors in [8, 9] for bilingual NMT sys-
tems. Stems and lemmas perform equally well in average
with only few exceptions: stems are better for translating
from de or into nl, while lemmas are better for translating
into de. For other language pairs differences are either non-
systematic or insignificant. M3 encodings alone are too am-
biguous as shown by the high percentage of the corpus cov-
ered by common encodings already at the bilingual level (see
Figure 1c). Note that in the case of de, where the percent-
age is lower, the encodings do help to increase the perfor-
mance. As expected, topic information does not imply rel-
evant changes probably due to the low diversity in the topic
characteristics (Table 3). However, the fact that contrary to
previous research [8, 9, 10] neither PoS tags nor lemmas have
a positive impact in the ML-NMT system motivates further
experiments with bilingual NMT systems enriched with M3
encodings, BN synsets and topic information.
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Figure 2: 2D t-SNE representation of the context vectors of the first 8 source sentences of tst2010 for system w, wb and wpsmb
under the zero-shot training condition. The same sentence has the same colour in different languages.

Table 5: BLEU scores on the TED talks tst2010 obtained with several systems under the zero-shot training condition. The
zero-shot pairs, de-nl and it-ro, are shown at the end. SUB1, SUB2 and SUB3 were submitted to the shared task.

beam size factors + 4-ensembles (beam size 10)

w5 w10 w wp wl ws wm wb wt wpsmb wpsm wpsmt wpsmbt
(SUB1) (SUB2) (SUB3)

de2it 18.02 19.20 19.78 19.85 18.95 20.07 19.67 20.28 19.67 20.35 20.10 20.05 20.33
it2de 18.05 19.49 19.90 20.03 20.03 19.98 19.98 20.42 20.30 20.22 20.42 20.06 20.45
de2ro 15.85 17.57 18.23 17.98 17.16 17.73 17.96 18.46 18.19 18.60 18.23 18.00 18.40
ro2de 18.56 20.05 20.87 21.04 21.52 21.06 20.93 21.23 20.78 21.34 21.49 21.12 21.41
de2en 30.11 31.67 32.65 32.62 31.66 32.74 32.47 32.97 32.71 33.34 33.11 32.91 33.51
en2de 24.61 26.06 27.02 27.53 27.30 26.80 27.10 27.26 26.97 27.36 27.15 27.10 27.44
en2it 26.33 27.90 28.88 28.66 28.74 28.97 28.41 29.35 28.69 29.06 28.99 28.94 29.34
it2en 31.22 32.56 33.46 33.59 33.85 33.15 32.95 33.20 33.25 33.49 33.53 33.33 33.87
en2nl 28.60 30.24 31.27 31.21 31.12 30.87 30.85 31.08 31.26 30.80 30.90 31.17 31.44
nl2en 33.86 35.39 36.20 36.61 36.34 36.56 36.16 36.57 36.03 36.92 36.82 36.55 37.40
en2ro 23.65 25.28 26.38 26.37 25.67 25.83 25.19 26.18 25.76 26.37 25.85 26.08 26.47
ro2en 32.02 33.59 34.34 34.33 34.60 34.40 34.28 34.82 34.34 35.31 34.87 34.89 35.09
it2nl 19.03 21.05 21.58 21.65 21.65 21.23 21.25 21.91 21.48 21.41 21.79 21.77 21.54
nl2it 19.80 21.23 21.72 21.56 21.34 21.62 21.16 21.97 21.71 21.81 21.61 21.84 21.83
nl2ro 17.28 18.42 19.09 18.89 18.98 18.69 18.78 19.39 19.07 19.35 19.09 19.45 19.42
ro2nl 19.28 21.21 21.70 21.72 21.76 21.79 21.74 21.65 22.00 22.21 22.61 22.20 22.50

de2nl 18.82 21.11 21.75 21.58 20.78 21.76 21.66 22.51 21.62 21.73 22.29 22.10 21.90
nl2de 18.82 20.76 21.52 21.81 21.86 21.46 21.62 21.99 21.56 22.04 21.81 21.99 21.77
it2ro 16.42 18.14 19.16 19.06 18.94 18.47 18.59 18.94 18.68 19.51 19.29 19.13 18.73
ro2it 17.37 19.50 20.04 20.17 20.61 20.38 19.97 20.84 20.28 20.60 20.94 20.74 20.32

Concatenation 22.68 24.31 25.08 25.10 24.93 24.96 24.82 25.32 25.01 25.38 25.33 25.30 25.46

It is interesting to notice that the final effect of the most
interlingual factors has not been a better clustering of sen-
tences according to their meaning. Figure 2 shows a quali-
tative example using a 2D t-SNE representation [23] of the
context vectors of 8 sentences in 3 cases. The baseline ML-
NMT system w (most-left plot) does already a very good job
in locating the sentences in consonance with their seman-
tics. The sentences for the languages used in training lie
together for the different languages, while sentences in the

unknown languages fr and es group in two specific regions
of the space irrespective of their meaning. The effect of BN
synsets (middle plot) and M3 encodings (not shown in Fig-
ure 2) is to locate fr and es sentences close to the the other
Latin languages ro and/or it. By looking at the examples,
that means that similarities of the M3 encodings across close
languages are too strong to be compared with the most dis-
tant languages, and that the top-1 BN synset for a term usu-
ally depends on the family that the language belongs to. So,
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Table 6: BLEU scores on the TED talks tst2010 obtained
with several systems under the small data training condition.
SUB1, SUB2 and SUB3 were submitted to the shared task.

wZERO wSMALL wpsm wpsmt wpsmbt
(SUB1) (SUB2) (SUB3)

de2it 19.78 19.55 20.53 20.14 20.58
it2de 19.90 19.92 20.05 19.49 20.26
de2ro 18.23 18.07 18.21 18.45 18.05
ro2de 20.87 20.82 21.13 20.51 21.33
de2en 32.65 32.08 33.44 32.71 33.24
en2de 27.02 26.82 27.22 26.71 27.37
en2it 28.88 28.83 29.01 28.76 29.07
it2en 33.46 33.03 33.81 33.70 33.85
en2nl 31.27 30.72 31.10 31.02 31.39
nl2en 36.20 35.90 37.00 36.48 36.79
en2ro 26.38 25.57 26.09 25.86 25.99
ro2en 34.34 33.86 34.82 34.58 34.89
it2nl 21.58 21.16 21.36 21.30 21.49
nl2it 21.72 21.27 21.82 21.56 21.72
nl2ro 19.09 18.87 19.14 19.35 19.16
ro2nl 21.70 21.74 21.89 21.61 22.27

de2nl 21.75 22.97 23.67 23.90 23.46
nl2de 21.52 23.19 23.92 23.64 23.56
it2ro 19.16 20.31 20.84 20.79 20.67
ro2it 20.04 22.41 23.36 22.94 23.70

Concat. 25.08 25.12 25.70 25.50 25.72

the features designed in this way would maximise their effec-
tiveness within a multilingual system for related languages
and, at the light of current results, a better disambiguation
and mapping between languages of synsets is necessary for
a real interlingual setting. However, the current implemen-
tation already achieves statistically significant improvements
when used in the en-de-ro-it-nl-NMT system and we show
in the following how these features are useful to translate
from unseen languages, es and fr. Translation into a new
language is still not possible because the system cannot cre-
ate new words beyond a combination of BPE subunits.

Table 7 summarises the results for es/fr–en translations
using the multilingual system under the zero-shot training
condition. When translating from English, the BLEU score
is close to 1 for all system irrespective of the information
they consider —also irrespective of the beam size an num-
ber of ensembled models. This score accounts mainly for
the common words between the two languages. But, when
translating into English, one can obtain a BLEU of 7.25 for
es2en translation (5.07 for fr2en). The baseline is higher
in this case because, as seen in Section 3, English is more
sparse than the other languages. Even then, the baseline is
improved by more than 4 points of BLEU for es2en and al-
most 3 points of BLEU for fr2en. The major contribution
comes from the inclusion of Babel synsets (models wb and
wpsmb outperform wpsm).

Table 7: BLEU scores for translations involving languages
not seen at all in training, es and fr, on the tst2010 under the
zero-shot training condition.

w wp wl ws wm wpsm wb wpsmb

en2fr 1.11 1.13 1.05 0.98 0.98 1.00 1.04 1.04
fr2en 2.41 2.77 1.77 3.14 2.84 3.63 5.07 5.02
en2es 1.29 1.04 1.02 0.98 0.92 0.99 1.02 1.36
es2en 3.09 3.67 2.61 4.22 3.88 4.87 6.75 7.25

6. Conclusions
This paper describes the UdS-DFKI participation at IWSLT
2017. Besides the description of the engines, we analyse the
multilingual TED corpus regarding our six characterisation
factors: parts of speech, lemmas, stems, Metaphone 3 en-
codings, Babel synsets and topics.

The most promising feature turned to be BN synsets, es-
pecially when combined with other factors. However, our
primary submission does not include them as the resource is
not allowed in the small data training conditions. Our pri-
mary submission, the wpsm system, almost reaches the per-
formance of our best system wpsmbt without any informa-
tion on the topic and the sense of a token.

BN synsets are the most expensive factor to obtain and
they are only queried for a subset of PoS; the common IDs
cover between 20% and 40% of the parallel corpora, depend-
ing on the language pair. Even then, they improve trans-
lations for a 75% of the language pairs and allow beyond-
zero-shot translation. Further efforts to deal with multiword
expressions and resolve ambiguities in the retrieval of the
synsets will be made to enhance the description of the data
and facilitate a multilingual learning. Constraining other fac-
tors such as M3 encodings and topics to content words could
also improve the performance and will be further researched.
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Abstract

This paper describes the joint submission of Samsung
Research and Development, Warsaw, Poland and
the University of Edinburgh team to the IWSLT MT
task for TED talks. We took part in two translation
directions, en-de and de-en. We also participated in
the en-de and de-en lectures SLT task. The models
have been trained with an attentional encoder-decoder
model using the BiDeep model in Nematus. We
filtered the training data to reduce the problem of noisy
data, and we use back-translated monolingual data for
domain-adaptation. We demonstrate the effectiveness
of the different techniques that we applied via ablation
studies. Our submission system outperforms our
baseline, and last year’s University of Edinburgh
submission to IWSLT, by more than 5 BLEU.

1. Introduction

This paper describes the system submission of Sam-
sung R&D Institute Poland and the University of
Edinburgh team. The models have been trained with
a deep attentional encoder-decoder neural machine
translation model using Nematus [1]. In this year’s sub-
mission, we focused on the core NMT architecture, for
which we selected the BiDeep model by [2], training
data filtering via language identification and MT-based
sentence alignment scores, and domain adaptation with
back-translated, domain-filtered monolingual training
data, and fine-tuning towards the in-domain training
set with MAP-L2 regularization towards the baseline
model [3].

Corpus raw aligned filtered

Commoncrawl [4] 2.40M 2.22M 1.62M
Europarl v7 [5] 1.92M 1.90M 1.85M
GoldAligment 509 508 486
MultiUN [6] 0.16M 0.16M 0.15M
News Com. v12 [4] 0.27M 0.26M 0.26M
Opensubtitles2016 [7] 13.88M 12.08M 9.04M
QED Corpus 0.07M 0.07M 0.06M
Rapid 2016 1.33M 1.28M 1.12M
Wikipedia Corpus 2.46M 2.16M 1.18M
WIT3 (in-domain) [8] 0.22M 0.21M 0.20M
Total 22.72M 20.35M 15.47M

Table 1: Admissible parallel corpora used for training,
with number of sentences before and after filtering

2. Training data and data selection

2.1. Parallel corpora

For the English-German language pair, we used the cor-
pora listed in Table 1. IWSLT provides a large amount
of permissible parallel training data. We performed fil-
tering based on sentence alignment and language iden-
tification.

To obtain a sentence alignment score, we follow
the idea that we can automatically translate the source
text, and use BLEU between the automatic translation
and the target side as a feature to predict probable
alignments [9]. We trained a Phrase-based Statistical
MT model, using significance filtering [10] to remove
improbable phrases. Then we translated German sen-
tences into English with a fast Statistical MT engine.
Then, a sentence aligner BLEU-Champ1 was applied
to score each parallel training sentence. We also scored
each sentence pair with a sentence-level language

1https://github.com/emjotde/bleu-champ

_____________________________________________________________
Proceedings of the 14th International Workshop on Spoken Language Translation

Tokyo, Japan, December 14th-15th, 2017

23



recognition tool. After these operations each sentence
pair had assigned BLEU-Champ scores and language
recognition scores. We selected small subset of 3k
sentences from the corpora and performed manual
evaluation for each sentence pairs scoring from 1 (very
bad) to 5 (very good). Then we trained a regression
model to predict human score based on BLEU-Champ
and language recognition scores. Finally, we used
the regression model to score whole parallel corpora
and select potentially good sentences (predicted score
above 2). We also removed lines with Wiki markup
as we observed negative impact of such lines in our
baseline model. Corpus sizes after these steps are
shown in column aligned and filtered. The filtering
method removed less than 5% of high quality corpora
like News Commentary, but it removed over 50% of
Wiki corpus. Additionally monolingual training data
from the Commoncrawl [11] was used for creating
synthetic parallel training data, see section 2.2 and 2.3
for details.

2.2. Selecting pseudo in-domain monolingual data

In order to reduce the amount of training data and pos-
sibly improve domain-adaptation effects, we decided
to select data that matched the domain of TED talks
based on Moore-Lewis filtering [12]. We followed
the procedure described in Edinburgh’s submission
to IWSLT16 [13]. We used the TED talk data from
WIT3 as seed data to create the in-domain language
model and a matching amount of randomly chosen
out-of-domain data for the contrasting language model.

Lang. Total Selected Avg. score Sel. score

de 2.9G 20M 0.4639 -0.0935
en 3.0G 20M 0.3797 -0.0394

Table 2: Selected monolingual data. Interpretation of
figures is the same as for parallel data.

As seen in Table 2 we selected 20M sentences for
back-translation from much larger original corpora of
2.9G and 3.0G sentences.

2.3. Preprocessing and subword units

To avoid the large-vocabulary problem in NMT mod-
els [14], we used byte-pair-encoding (BPE) to achieve
open-vocabulary translation with a fixed vocabulary of
subword symbols [15]. For all languages we set the

number of merge operations to 90k. Segmentation into
subword units was applied after any other preprocess-
ing step for joint source and target vocabulary. We set
vocabulary threshold to 50.

2.4. Back-translation

Corpus size oversapling

WIT3 (in-domain) [8] 0.20M 4.17M
Other parallel 15.27M 15.27M
Synthetic 19.57M 19.57M
Total - 39.01M

Table 3: Final corpora used for training including
admissible, filtered parallel corpora, oversampled in-
domain corpus and synthetic, backtranslated data.

Back-translated monolingual in-domain data has
been shown to be very beneficial when added to the
parallel training data [16]. We back-translated the
selected monolingual data with shallow, single layer
NMT model trained on raw, permissible parallel data.
We call it a baseline model hereafter. The model was
trained with Nematus and translation was done with
Marian [17]. We present the size of the final training
corpora in table 3.

3. Neural translation systems

The neural machine translation system is an attentional
encoder-decoder [18], which has been trained with Ne-
matus [1]. There have been a number of papers show-
ing that deeper models in machine translation lead to
higher quality output. We apply the BiDeep model [2],
which is a combination of stack RNNs and deep recur-
rent RNNs. Each cell in the stack RNN consists of mul-
tiple GRU cells, as illustrated in Figure 1. We use 4
stacks of RNNs with deep recurrent GRUs with a tran-
sition depth of 2.

In these experiments we followed the implemen-
tation details described in Edinburgh’s WMT 2017
submission [19]. Important features which we used
were: layer normalisation, BPE Version 2 with filtering
of rare subwords, dynamic batching and using tied
embeddings.

Additionally, to reduce training time we experi-
mented with data parallelism on multi-GPU. Most of
the approaches ([20],[21]) use SGD optimizer with
centralized parameters which all workers read and
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Figure 1: Illustration of BiDeep RNN architecture [2].
The architecture consists of a stack of layers of recur-
rent cells; each cell is composed of multiple GRU tran-
sitions.

update. We decided to use Adam optimizer instead as it
was shown to converge faster. Unfortunately, the addi-
tional parameters in Adam make centralized parameter
approach ineffective due to large copy overhead (one
needs to store also means and variances of all param-
eters). In our implementation there is no centralized
copy, instead each worker holds its own copy of all
parameters. Each worker computes gradients on its
own batch and only the gradients are summed over all
workers and shared among them synchronously (we
use nccl library2). Next, each worker independently
updates its model parameters using the shared gradient.
The data copied between workers is thus minimal.
Since all workers are initialized equally, after the
update they all still hold the same parameter values.
Using N workers in this implementation can be seen
as single worker case with N -times larger batch size.
Thus to compare results one needs to set the training
parameters like validation frequency accordingly.
Table 4 compares trainings results for different number
of GPUs. The results refer to de2en, BiDeep model
training on filtered corpus using single node server with
8 GeForce 1080Ti. We did not present the 8-GPU case
due to hardware problems with one card. The results
show that our approach scales well. With increasing
number of cards the throughput measured in words per
second scales nearly linearly while the training time
significantly reduces and the achieved BLEU is in close
range.

To train the models for IWSLT 2017 submission
we used 3 servers with 8 GPUs each (1 with GeForces

2https://github.com/NVIDIA/nccl

BLEU time [h.] words/sec. overhead
1GPU 35.01 162.2 1082 8.3%
2GPU 34.85 103.0 1890 15.6%
3GPU 35.45 80.2 2950 17.6%
4GPU 35.30 67.1 3586 18.6%
6GPU 35.16 48.2 5315 23.0%

Table 4: Multi-GPU BiDeep model traininig statistics
for different number of GPU. Training performed on
de2en filtered corpora. The first column reports the best
BLEU, the second convergence time, the third number
of processed words per second. The last one is the over-
head added by using the multi-gpu mechanism (reduce-
all synchronization). Note the non-zero overhead even
with 1 GPU.

1080Ti, and 2 others with Teslas K80). The number of
GPU used in particular training varied between 1 and 8
depending on resources availability.

3.1. Training, tuning and ensembling

We perform several steps of fine-tuning of the general
models, using continued training with a new selection
of training data and training parameters.

For each translation direction we run several inde-
pendent trainings with slightly different data and pa-
rameters to get variety of final models for most success-
ful ensembling. In all trainings we used TED test set
from 2015 as a validation set.

As an example, the training of two of the de2en
models (Fig. 2) used in the final ensemble, was started
on the filtered parallel training data with 20 million in-
domain backtranslated sentences and TED corpus over-
sampled 20 times. We trained this to convergence. Af-
ter convergence, we enabled dropout, with both embed-
ding dropout and hidden layer dropout set to 0.2, and
continued training until results converged again.

We repeated this procedure two times for each di-
rection, hoping that two independent runs will give us a
better ensemble model than a checkpoint ensemble.

Finally we performed a fine-tuning step where we
tuned to just the TED corpus with dropout and MAP-L2
regularization towards the previous model [3]. We also
performed careful validation and early stopping. For
fine-tuning we selected best and second best models for
each independent run from the previous step.

For the final system we choose the 4 fine-tuned
models that gave the best ensembles. In de2en direction
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Figure 2: German-to-English models training progress.
Plot shows the BLEU (straight lines) and validation er-
ror (lines with dots) on tst2015. Colors represent suc-
cessive training parameters modifications. The number
in plot label is the best BLEU score for particular train-
ing configuration.

the best model was a checkpoint ensemble and in en2de
independent ensemble (from 2 independent models).

3.2. Spoken Language Translation

We also participated in the IWSLT Lectures spoken lan-
guage translation task. This task consisted of three Ger-
man lectures and two English lecutres and ten English
TED talks. The test sets had no segmentation or punc-
tuation. Our submission used an English and a German
punctuation model provided by the SUMMA project.
These models are essentially neural machine translation
models which are trained to predict commas, full stops,
question marks, exclamation marks and three dots [22,
23]. The punctuated source was then translated using
the reranked ensembles described above.

4. Results

We present results in table 5. For the progress set, we
also report BLEU of the University of Edinburgh sub-
mission to IWSLT16 [13], which was ranked first for
en-de, and third for de-en. For results comparing our
MT and SLT submissions to other systems in IWSLT
please see the overview paper [24].

We performed extensive ablation studies. Our
results confirm the effectiveness of deep models, which
yield an improvement of 0.8-1.4 BLEU. They also
give evidence for the sensitivity of our models towards

Translation Progress set Test set
(2016) (2017)

de-en en-de de-en en-de

IWSLT16 [13] 32.56 - 27.34 -

baseline 32.52 26.05 27.84 24.33
BiDeep raw 33.92 27.27 29.28 25.14
BiDeep filtered 34.07 27.66 29.94 25.61
+backtranslations 36.27 28.81 30.93 25.24
+dropout 36.50 29.83 31.41 26.66
+finetune on TED 37.08 30.21 32.26 27.38
+checkpoint ens. 37.61 30.34 32.37 27.56

independent ens. 37.56 29.91 32.71 27.23
+right to left 37.85 30.93 33.08 28.00

Table 5: Results for the IWSLT TED translation task
(BLEU). Submitted system highlighted in bold.

training data noise, and models trained on filtered data
outperform those trained on the full training coropra
by 0.5–0.7 BLEU. Our use of back-translated data
improved performance for de-en (+1 BLEU), and on
the 2016 progress set for en-de (+0.8 BLEU), but not
on the 2017 test set (-0.4 BLEU). Fine-tuning towards
the TED training data remains an effective strategy
(+0.8 BLEU), as does ensembling and right-to-left
reranking.

In total, we report improvements of over 5 BLEU
over last year’s IWSLT submission by the University
of Edinburgh [13], which was also based on Nematus
and used a similar strategy for preprocessing and train-
ing. We attribute this to technical improvements in our
neural network architecture, such as layer normalisation
and BiDeep networks, better regularization during fine-
tuning, and the use of more out-of-domain training data,
and the use of reranking with a right-to-left model. We
note that even our best single model outperforms last
year’s ensemble of 5 models by more than 4 BLEU.

5. Conclusions

This paper describes the joint submission of Samsung
R&D Institute Poland and the University of Edinburgh
team to the IWSLT MT task for TED talks, for the
translation directions en-de and de-en. We report
strong baseline results that are on par with last year’s
University of Edinburgh submission to IWSLT. Our
experimental results confirm the effectiveness of the
BiDeep NMT architecture, and of domain adaptation
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via back-translated monolingual training data, and
regularized fine-tuning towards an in-domain training
set. Our results also highlight the importance of clean
training data for NMT training, and we obtain better
translation quality with a filtered subset of the permis-
sible parallel training data. Our submission system
outperforms our baseline, and last year’s University
of Edinburgh submission to IWSLT, by more than 5
BLEU.
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Abstract

This work describes the Neural Machine Translation (NMT)
system of the RWTH Aachen University developed for the
English↔German tracks of the evaluation campaign of the
International Workshop on Spoken Language Translation
(IWSLT) 2017. We use NMT systems which are augmented
by state-of-the-art extensions. Furthermore, we experiment
with techniques that include data filtering, a larger vocabu-
lary, two extensions to the attention mechanism and domain
adaptation. Using these methods, we can show considerable
improvements over the respective baseline systems and our
IWSLT 2016 submission.

1. Introduction
We describe the Neural Machine Translation (NMT) system
of the RWTH Aachen University developed for the evalu-
ation campaign of International Workshop on Spoken Lan-
guage Translation (IWSLT) 2017. We have participated in
the unofficial bilingual Machine Translation (MT) track for
the German→English and English→German language pairs.
The in-house NMT system incorporates various state-of-the-
art extensions.

For the IWSLT 2016 evaluation campaign, RWTH
Aachen utilized different translation systems [1] including a
state-of-the-art phrase-based system, a neural machine trans-
lation system and the joint translation and reordering (JTR)
model [2]. Furthermore, last year’s system applied feed-
forward and recurrent neural language and translation mod-
els for reranking. The attention-based approach had been
used for reranking the n-best lists for both the phrase-based
and the hierarchical setups. On top of these systems, a system
combination enhances the translation quality by combining
individually trained systems. For the IWSLT 2017 evalua-
tion campaign, we developed the systems only based on the
NMT approach as it has shown the most promising results
among all.

This paper is organized as follows. In Section 2, we
briefly address our preprocessing which differs from our pre-
vious submissions [3, 1]. Section 3 describes the details of

the NMT systems, the baseline, our optimization techniques
as well as two extensions to the attention mechanism. Our
experiments for each track are summarized in Section 4.

2. Preprocessing

2.1. Preprocessing

Recent studies [4] showed that attention-based neural net-
work systems do not benefit from several established prepro-
cessing features such as compound splitting and POS-based
word reordering. Therefore, we decided to employ a sim-
pler version of preprocessing which uses only tokenization,
frequent casing, and simple categories. In this approach,
numbers are not mapped to a specific category-token but are
treated like regular words instead.

All words and numbers are split into subword units us-
ing byte-per-encoding (BPE)1 introduced by [5]. We use 90k
BPE merging operations trained jointly on the concatenated
source and target training data. In the preprocessing, we do
not distinguish if a language is seen as a source or target lan-
guage.

2.2. Data Filtering

In order to remove incorrectly aligned sentence pairs, we
drop all training samples for which the length of the source
sentence exceeds the length of the target sentence by more
than about 70%. We applied this method for both translation
directions. In the following we describe the effects for the
English→German task. The length comparison is executed
on the word level and results in the total removal of 1.7M
sentences, i.e. 8% of the total training data. The majority of
removed sentence pairs are part of the Common Crawl (300k
sentences i.e. 14% of Common Crawl) and the OpenSub-
titles corpora (1000k sentences i.e. 8% of OpenSubtitles).
The removal rates for the individual corpora can be found in
Table 1.

1https://github.com/rsennrich/subword-nmt

_____________________________________________________________
Proceedings of the 14th International Workshop on Spoken Language Translation

Tokyo, Japan, December 14th-15th, 2017

29



Table 1: Effect of filtering on the individual training corpora on the example of English→German.

Common Crawl Europarl UN News Comment OpenSub QED TED Wiki Total
# sentences 2,399,123 1,920,209 162,981 216,190 13,430,645 72,747 206,112 2,459,662 20,867,669
# removed 336,248 38,032 3,323 3,547 1,056,628 4,343 2,560 218,860 1,663,541
% removed 14.02% 1.98% 2.04% 1.64% 7.87% 5.97% 1.24% 8.90% 7.97 %

3. Neural Machine Translation System
The best performing system provided by RWTH Aachen is
an attention-based recurrent neural network similar to [6].
Provided with a source f J

1 and a target sequence eI
1, NMT

models the conditional probability of the target given the
source. The model itself consists of an encoder which pro-
duces a continuous representation of the input sequence f J

1 ,
an attention mechanism which allows the system to focus on
certain words during the translation and a decoder which re-
turns a probability distribution over all possible target tokens
for every time step.

3.1. Baseline System

We use the attention-based NMT system as our baseline. In
our setup, all words are projected into a 620-dimensional em-
bedding space both on the source and on the target side. The
bidirectional encoder and the unidirectional decoder consist
of LSTM nodes [7] with peephole connections using 1000
cells. The output layer of the networks is a two-layer maxout
[8] followed by a softmax operation that creates a probability
distribution over the target vocabulary. We use the additive
attention with tanh activation function as proposed in [6] fol-
lowed by the softmax to compute the attention weights.

3.2. Stacked Layers

In this architecture, we experiment with two stacked LSTM
layers in both encoder and decoder to build a deeper model.
We connect all internal states of the first LSTM layer to the
second. This approach is applied both in the bidirectional
encoder and the unidirectional decoder.

3.3. Optimization

Since the learning trajectory considerably depends on the op-
timization technique, the optimizer plays an important role in
fast convergence, training stability and reliable performance.
It is desired to have a fast convergence to a zone in which
a good local minimum is located. After that, the algorithm
shrinks the learning rate to get a finer search pattern and con-
verge to a suitable model within the located area.

As proposed in [9], we start the training using Adam [10]
with a learning rate of 0.001 up to 600k iterations. After-
wards the learning rate of the Adam optimizer is scaled down
by the factor of 0.75 every 20k iterations. In the following,
we refer to this approach by annealing Adam.

3.4. Fertility Feedback

One of the problems arising from the attention-based
sequence-to-sequence model, which is used as our baseline,
is that there is no explicit alignment or coverage informa-
tion. The attention weights are included in the context vector
and there is no guarantee that the network can extract this
information in the next attention computation. One of the
proposed solutions [11] is to feed back the sum of the align-
ments over the past decoder steps. This information is added
to the computation of the attention energies for each source
position. Hence, in each decoder step this sum indicates how
much attention has been given to the source position j up to
step i. The feedback term β̂i, j is expressed as:

β̂i, j =
i−1

∑
k=1

αk, j (1)

One might simply use β̂i, j as an additional information
in order to compute the attention energies. Instead, we use
a fertility parameter that determines how many target words
should be generated by a single source word. The concept
of fertility has been introduced in IBM Model 3 and can be
integrated into neural networks [11, 12].

Let’s assume a single word should be translated twice,
then β̂i, j can be divided by a factor of 2. This normalizes the
sum presented in Equation 1, such that the network can use
the information whether the current word is over- or under-
translated. Therefore, βi, j is defined as:

βi, j =
1
φ j

i−1

∑
k=1

αi, j (2)

where φ j refers to the fertility of f j. This term depends on
the encoder states, because it can vary if the word is used in
a different context. Like [11] in our model φ j is defined as:

φ j = N ·σ(υ>φ ·h j) (3)

where N specifies the maximum value for the fertility which
is set to 2 in our experiments. This value is included in the
calculation of the attention energies ei, j:

ei, j = υ
> tanh

(
Wsi−1 +Uh j +V βi, j

)
(4)

where h j and si denote the output of the encoder and the de-
coder state respectively. W , U , V and υ are the weight ma-
trices.
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3.5. Convolutional Feedback

In the standard attention-based model, there is no depen-
dency on the source position while computing the attention
weights. Several authors argue [13, 14] that this indepen-
dence assumption does not hold for monotonous alignments
as can be found in speech recognition. Although the align-
ments in machine translation are not monotonous in gen-
eral, we still encounter many cases of local monotonicity
in many languages. Convolutional attention feedback tries
to encounter such problems by putting an explicit focus on
the source positions around j when generating the j-th target
word. Formally, it computes feature vectors γi by applying
a one-dimensional convolutional operation over the attention
weights from the last decoder step:

γi = G∗αi−1 (5)

where G ∈ RN×2k+1. This leads to N vectors, one for each
filter that has been applied. Every filter moves over a window
of size 2k+1 that is centered at position j, i.e.:

γi, j =
j+k

∑
l= j−k

Gn, j−l ·αi,l for all n = 1, · · · ,N. (6)

The result of this is used as a feedback term to compute the
attention weights in the current decoder step:

ei, j = υ
> tanh

(
Wsi−1 +Uh j +V γi, j

)
. (7)

We use 5 filters with a window of size 5 in our experiments
that include convolutional feedback. Again we use h j respec-
tively si to denote the output of the encoder and the internal
state of the decoder.

4. Experimental Evaluation
For the evaluation, we carry out experiments on two trans-
lation tasks: German→English and English→German. The
translation systems are built using our in-house implemen-
tation of the attention-based NMT approach which relies on
the Blocks2 framework [15] and Theano3 [16].

All systems are trained on the filtered bilingual data as
described in Section 2.2 and no monolingual data. In order
to adapt our system to the domain of TED Talks, we add
the TED corpus eleven times and the QED corpus six times
to our training data. This results in a training set of 21.6M
parallel sentence pairs.

Before training, we shuffle the training samples once and
use mini-batches of 50 sentence pairs while sentences longer
than 65 subwords are dropped. The processing of one mini-
batch is called an iteration. The networks are trained for up
to 600k iterations and equipped with the various features pre-
sented in Section 3. We evaluate the models every 10k itera-
tions.

2https://github.com/mila-udem/blocks-examples
3http://deeplearning.net/software/theano/

Throughout our experiments, we observe that employ-
ing the Adam annealing scheme consistently gives us strong
improvements of at least 1.5% BLEU over the pure Adam
optimizer. Similar gains can be achieved by averaging the
weights among the four best models of a single training run
as described in the beginning of [17]. Both methods are ap-
plied to improve upon a weak Adam endpoint. Hence, we
always pick the option that leads to a better average BLEU
score. The results of the other method are omitted in this
paper for the sake of brevity.

We try to fine-tune the models on the indomain data
which consists of the TED corpus to which TED.tst2011,
TED.tst2012 and TED.tst2013 sets were added.

Decoding is performed using beam search with a beam
size of 12 and the scores are normalized w.r.t the length of
the hypotheses.

We use TED.dev2010 consisting of 888 sentences
as our validation set and evaluate our models on
TED.tst2010, TED.tst2014 and TED.tst2015 as
unseen test sets. The systems are evaluated using case-
sensitive BLEU [18] computed by mteval-v13a 4, TER
[19] computed by tercom 5 and CharacterTER [20] which
we abbreviate to CTER6.

To avoid the out of vocabulary problem, we use the joint
BPE [5] to convert sentences into the sequences of subwords
on both the source and the target side. In both tasks, the
number of joint-BPE merging operations is 90k.

4.1. German→English

Based on the work done in [4], we equip the
German→English baseline with two layers of stacked
LSTMs in both the encoder and the decoder which is
referred to as multilayer enc-dec baseline. The
total number of parameters for this setup is about 220M.
All networks are trained with 30% of dropout for better
regularization. The results are depicted in Table 2, Row
1. After training the network and reaching convergence,
we apply annealing Adam as mentioned in Section 3.3 for
additional 300k iterations (Row 2 in Table 2). As shown, this
strategy results in improvements up to 2.4% BLEU score,
1.4% TER and 1.4% CTER averaged over the four test sets.

Using additional information from previous attention
states by employing fertility feedback, we gain 0.5% BLEU
and 0.1% TER on average. The results in Row 3 of Table 2
have been obtained by applying annealing Adam. On top of
this model, we fine-tune the system. Here, we pick the best
model and retrain it using the indomain TED data discussed
before for around 20 epochs. Surprisingly, fine tuning does
not help and even hurts slightly in terms of TER. One of the
reasons is that we have already weighted our indomain data
in the training data such that any further fine tuning does not
affect the learning trajectory. In the other words, the model

4ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13a.pl
5http://www.cs.umd.edu/ snover/tercom/
6https://github.com/rwth-i6/CharacTER
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Table 2: Results measured in BLEU [%], TER [%] and CTER [%] for the individual systems for the German→English MT task.

TED.dev2010 TED.tst2010 TED.tst2014 TED.tst2015
# System BLEU TER CTER BLEU TER CTER BLEU TER CTER BLEU TER CTER

1 multilayer enc-dec baseline 34.3 44.9 46.1 33.0 46.0 48.1 31.3 49.0 51.6 31.1 48.2 50.6
2 + annealing Adam 36.4 43.2 45.2 35.0 44.3 46.3 33.8 46.2 49.3 34.0 46.0 48.3
3 + fertility feedback 37.0 42.4 44.8 35.6 43.7 45.3 33.9 46.2 49.0 34.6 45.4 48.4
4 + fine tuned 36.2 43.2 44.9 35.6 44.0 45.2 33.9 46.6 48.3 34.5 45.7 48.6
5 + convolutional feedback (averaged4) 36.2 43.0 45.4 34.9 44.1 46.5 33.1 46.4 49.2 33.1 45.8 49.0
6 ensemble 2, 3, 5 38.3 41.2 43.4 37.3 42.3 44.3 35.5 44.9 47.8 35.5 44.5 47.6

is smoothly adapted to the TED domain from the first iter-
ations. We also apply convolutional feedback as explained
in Section 3.5, and average the best four models of a single
training run (see Row 5). As it can be seen, convolutional
feedback is slightly better in terms of TER and hurts in terms
of BLEU compared to Row 2.

Finally, we build an ensemble [21] of different archi-
tectures including two multilayer enc-dec baseline, fertility
feedback and convolutional feedback models. Ensemble im-
proves the translation performance compared to the best sys-
tem (Row 3) by 1.4% in terms of BLEU, 0.6% TER and 0.4%
CTER on average.

4.2. English→German

For the English→German task we start with a simple base-
line described in Section 3.1 which employs a single LSTM-
layer for both the bidirectional encoder and the decoder. The
model is trained using the Adam algorithm for 600k itera-
tions and by default, no dropout is applied.

On top of this baseline, we add various feature combi-
nations. Results are shown in Table 3. Adding dropout to
the baseline system yields an average improvement of 0.7%
BLEU. Based on this, we continue the training with the an-
nealing Adam for 300k iterations which gives us an improve-
ment of 2.5% BLEU.

Furthermore, we train a series of models that utilize the
fertility feedback presented in Section 3.4. Adding this fea-
ture on top of the baseline system yields an improvement of
0.3% BLEU (Table 3, Row 4). Adding a second LSTM-layer
to both the encoder and the decoder leads to an average gain
of 0.2% BLEU and 1.1% TER.

Again, we observe that it is important to keep on training
for 300k iterations with a small learning rate as this boosts
our performance by 2.3% BLEU (Table 3, Row 7). Usually,
the models extracted from a training run are among the last
models saved during the 600k iterations. Therefore, the ef-
fect of the annealing Adam scheme can be attributed to an
insufficiently small learning rate or a model that is not fully
converged. However, it hurts the performance of the model
if we further continue training on the regular training data.

We fine-tune the models either on the indomain data or an
expanded version which contains the QED corpus as well.

Both approaches led to almost no change w.r.t BLEU and
TER. As in the case of the German→English system, we con-
clude that due to the weighting of the TED data, additional
domain adaptation is of little use. However the models that
are fine-tuned on the TED corpus perform a little bit stronger
in the final ensemble which is why we decide to keep them.

In total, we combine fertility feedback, multi-layered en-
coder and decoder as well as dropout with an annealing ver-
sion of Adam to get an improvement of 3.3% BLEU (Table
3, Row 9). Surprisingly, by averaging the four best fertil-
ity feedback models (Table 3, Row 5), we obtain a smaller
model that has been trained for a much shorter period of time
but performs only 0.3% BLEU worse than to the fine-tuned
one on average.

Combining several of the systems in one ensemble led to
an average improvement of 1.5% BLEU and 1.4% TER over
our single best system.

4.3. Final Results

Compared to last year’s submission, we have completely
moved towards pure neural MT systems. Although last
year’s system contains a phrase-based system in combina-
tion with the JTR model [2], neural language and translation
models as well as NMT systems, the results are improved
by 2.3% BLEU and 1.8% TER for the TED.tst2010 set
and by 1.3% BLEU and 1.6% TER on the TED.tst2014
set as shown in Table 4. Furthermore, the pure NMT system
for 2017 submission shows a huge improvement compared to
the 2015 submission in which the NMT model had only been
used in the reranking of the n-best lists for both phrase-based
and hierarchical setups.

The performance on the TED.tst2016 and
TED.tst2017 test sets is shown in Table 5. We evaluate
our hypothesis via the IWSLT 2017 evaluation server.

5. Conclusion

The RWTH Aachen has participated in two bilingual MT
tracks for the German→English and English→German
IWSLT 2017 evaluation campaign. The 2017 submission in-
cludes neural models only opposed to last year’s system in-
cluded the NMT system and the phrase-based system. The
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Table 3: Results measured in BLEU [%], TER [%] and CTER [%] for the individual systems for the English→German MT task.

TED.dev2010 TED.tst2010 TED.tst2014 TED.tst2015
# System BLEU TER CTER BLEU TER CTER BLEU TER CTER BLEU TER CTER

1 baseline 26.0 55.3 50.6 26.4 54.3 51.1 24.6 57.1 53.7 27.2 55.2 51.1
2 + dropout 26.7 53.7 50.5 27.4 53.0 50.8 25.3 56.4 53.9 27.4 55.1 51.3
3 + annealing Adam 28.6 52.1 47.1 30.2 51.0 48.5 27.9 53.9 50.7 30.2 53.0 48.4
4 + fertility feedback 26.4 54.3 50.6 26.7 54.0 51.5 25.3 56.7 53.8 27.0 55.5 50.9
5 + average4 28.9 50.9 47.0 29.9 50.9 47.7 27.2 54.3 50.5 29.9 52.4 47.9
6 + multilayer enc-dec 26.5 53.5 50.0 27.1 53.5 51.3 25.2 56.2 53.5 27.3 54.5 50.7
7 + annealing Adam 28.8 51.1 46.8 29.6 51.2 48.0 27.6 54.0 50.0 29.9 52.6 48.3
8 + fine tuned 28.4 51.4 47.0 29.8 51.2 47.6 27.5 54.3 49.8 29.9 52.7 47.4
9 + dropout 28.9 51.4 47.3 30.1 50.8 47.4 27.6 54.1 50.3 30.5 52.3 46.8
10 ensemble 3, 5, 8, 9 30.3 49.9 45.2 31.8 49.5 45.9 29.2 52.8 48.8 31.5 51.1 45.9

Table 4: Comparison to last years’ German→English MT
task submissions. Results measured in BLEU [%], TER [%]
and NIST.

TED.tst2010 TED.tst2014
System BLEU TER CTER BLEU TER CTER

2015-Submission [3] 31.9 47.6 45.5 - - -
2016-Submission [1] 35.0 44.1 42.7 34.2 46.5 46.9
2017-Submission 37.3 42.3 44.3 35.5 44.9 47.8

Table 5: Results measured in BLEU [%], TER [%] and NIST
on TED.tst2016 and TED.tst2017.

TED.tst2016 TED.tst2017
MT Task BLEU TER NIST BLEU TER NIST

De→En 35.38 44.48 7.8947 30.22 49.44 7.1608
En→De 28.09 55.23 6.5995 25.12 59.09 6.1239

baseline systems for the MT track utilize our state-of-the-art
attention-based neural machine translation. We are able to
further improve translation by applying a multilayer encoder
and decoder and increasing the number of subword units. Us-
ing refinements of the attention mechanism to feedback more
alignment information leads to better results. A significant
gain is achieved by the annealing scheme based on Adam
and the ensemble of different NMT systems.

In total, we achieve a performance of 35.5% BLEU
and 44.5% TER on the TED.tst2015 data set of the
German→English task. Compared to our 2016 submis-
sion, this is an improvement by 1.3% BLEU and 1.6%
TER. For the English→German task our state-of-the-art sys-
tem produces a score of 31.5% BLEU and 51.1% TER on
TED.tst2015.
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Abstract
Neural Machine Translation has been shown to enable in-
ference and cross-lingual knowledge transfer across multi-
ple language directions using a single multilingual model.
Focusing on this multilingual translation scenario, this work
summarizes FBK’s participation in the IWSLT 2017 shared
task. Our submissions rely on two multilingual systems
trained on five languages (English, Dutch, German, Ital-
ian, and Romanian). The first one is a 20 language direc-
tion model, which handles all possible combinations of the
five languages. The second multilingual system is trained
only on 16 directions, leaving the others as zero-shot trans-
lation directions (i.e representing a more complex inference
task on language pairs not seen at training time). More
specifically, our zero-shot directions are Dutch↔German
and Italian↔Romanian (resulting in four language combi-
nations). Despite the small amount of parallel data used
for training these systems, the resulting multilingual models
are effective, even in comparison with models trained sepa-
rately for every language pair (i.e. in more favorable condi-
tions). We compare and show the results of the two multi-
lingual models against a baseline single language pair sys-
tems. Particularly, we focus on the four zero-shot directions
and show how a multilingual model trained with small data
can provide reasonable results. Furthermore, we investigate
how pivoting (i.e using a bridge/pivot language for inference
in a source→pivot→target translations) using a multilingual
model can be an alternative to enable zero-shot translation in
a low resource setting.

1. Introduction
Recently, multilingual translation across different languages
using a single model showed to perform in a comparable way
with single language pair systems. In [1, 2], a multilingual
model has been successfully trained using a standard Neu-
ral Machine Translation (NMT) architecture by applying a
simple preprocessing step on the source side of the training
data. It consists in prepending an artificial language token
indicating the target language id at the beginning of each
sentence. This information guides the system towards a spe-
cific target language both at training and inference time. This
mechanism of guiding the multilingual model is referred to
as target-forcing [2].

Multilingual
NMTEnglish

Italian

Romanian

English

Italian

Romanian

Dutch Dutch

German German

Figure 1: The multilingual system source→target associ-
ation. A parallel data exists for all the 20 directions in
the first multilingual model, where as zero-shot model the
Dutch↔German and Italian↔Romanian pairs (dashed line)
are excluded

In this work, we present our participation in two
IWSLT20171 [3] shared tasks: i) a multilingual translation
task in a small data condition for twenty language directions,
and ii) a multilingual zero-shot task in a similar small data
condition. For convenience, throughout the paper, we refer to
the models trained for the two tasks respectively as Multilin-
gual and Zero-shot models. We trained the two models sep-
arately, by sharing a common configuration. The only differ-
ence, at training time, is that we removed the four language
directions involved in the zero-shot task. Figure 1, shows the
twenty possible associations between the source and target
pairs, avoiding (source = target) condition. We trained the
models following the same preprocessing and training pro-
cedures described in [1]. Note that, due to its small size
(≈ 200K for each language pair), the training data set be-
comes even more sparse after preprocessing and dropping
sentences above a certain length (which becomes necessary
in order to facilitate and speed-up the training process).

For comparing the performance of the multilingual and
zero-shot models, we trained 20 single language pair mod-
els. For a fair comparison, the preprocessing and training
procedures are similar to the multilingual models. The same
models are also used for the comparison against the pivot-
ing method, in which English is fixed as the bridging lan-
guage. In terms of evaluation results, the overall performance
of the zero-shot model is satisfactory even if, unsurprisingly,
lower than the multilingual model. The largest distance is
observed in Romanian→Italian (−3.02 BLEU points), while
the smallest difference is observed in the Dutch→German

1https://sites.google.com/site/iwsltevaluation2017/
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direction (-1.63 BLEU points).
In the following sections of this paper, we begin by in-

troducing the main concepts related to NMT (§2). Then, we
review the related work in a multilingual (§3.1) and zero-
shot (§3.2) translation domains. In Section 4, we describe the
training details (§4.1), the dataset, the preprocessing proce-
dures (§4.2), as well as the results of the single language pair
(§4.3) and the multilingual (§4.4) models. For comparing the
different approaches, we focus on the zero-shot directions in
section (§4.5). Then, we give further analysis in Section 5
and conclude the work in Section 6.

2. Neural Machine Translation
NMT comprises an encoder, a decoder, and an attention-
mechanism, which are all trained with maximum likelihood
in an end-to-end fashion [4]. The encoder is a recurrent neu-
ral network (RNN) that encodes a source sentence into a se-
quence of hidden state vectors. The decoder is an RNN that
uses the representation of the encoder to predict words in the
target language [5] [6]. The attention mechanism is used to
improve the translation by deciding which part of the source
sentence can contribute mostly in the prediction process at
each time step.

As shown in Figure 2, which simplifies the NMT archi-
tecture, first the encoder (green colored section) takes the
source words left to right, maps them to vectors and feeds
them into the RNN. When the <eos> (i.e end of sentence)
symbol is seen, the final time step initializes the decoder
RNN (blue colored). At each time step, the attention mecha-
nism is applied over the encoder hidden states and combined
with the current hidden state of the decoder to predict the
next target word. Then, the prediction is fed back to the de-
coder RNN to predict the next word until the <eos> symbol
is generated [7].

In order to build a multilingual model, in this work we
used a standard encoder-decoder NMT architecture with a
general attention mechanism that combines via dot product
the decoder hidden state and a linear transformation of the
encoder state [8]. Furthermore, we used four layers of RNN
both on the encoder and decoder side.

3. Related Work
3.1. Multilingual NMT

Early works in multilingual NMT are characterized by the
use of separate encoder, decoder, and an attention mechanism
for every language direction [9] [10]. Firat et al. [11] intro-
duced a way to share the attention mechanism in a many-to-
many translation setting still keeping separate encoders and
decoders for each source and target language. In a more
closely related approach to the one, we utilized in our sys-
tems, [1] and [2] introduced a way to share not only the
attention mechanism but also a single encoder-decoder. In
both works, an artificial language token is prepended at a
preprocessing stage to the source sentences in order to en-

able multilingual translation. In a rather different way, the
approach in [2] appended a language-specific code to differ-
entiate words from different languages. The word and sub-
word level language-specific coding mechanism is proved to
be expensive, by creating longer sentences that can deterio-
rate the performance of NMT [5]. In addition, they appended
the artificial token as a prefix and postfix on the source side
of the training and validation data. In [1], however, only one
artificial token is prepended at the beginning of the source
sentences. This single token, which specifies the target lan-
guage proved to work in a comparable performance as speci-
fying two (prefix and postfix) tokens. In this work, we follow
the Johnson et al. [1] approach for prepending.

3.2. Zero-Shot Translation

Firat et al. [12], suggested a zero-resource translation by ex-
tending their approach in [11] with a shared attention mech-
anism and a separate encoder-decoder architecture for every
language pair. They leverage a pre-trained multi-way mul-
tilingual model, and then fine tune it with synthetic parallel
data generated by the model itself. Their approach, how-
ever, does not allow a zero-shot translation. Instead, they
proposed a many-to-one translation setting and used the idea
of generating a pseudo-parallel corpus [13] for fine-tuning
purposes Moreover, also in this case, the need of separate
encoders and decoders for every language pair significantly
increases the model complexity. So far, though simple, the
most effective approach proposed for zero-shot translation is
the one based on target-forcing at preprocessing stage [1] [2].
The most attractive benefit of the target-forcing comes from
the possibility to perform zero-shot translation with the same
multilingual setting as in [1, 2].

However, recent experiments have shown that the mech-
anism fails to achieve reasonable zero-shot translation per-
formance for low-resource languages [14], due to the fact
that the target-forcing mechanism requires more examples
at training time to effectively handle zero-shot at inference
stage. This is particularly visible in case of zero-shot target
language which appears only once in comparison with other
source → target pairs. The promising results in [1] and [2]
hence require further investigation to verify if their method
can work in various language settings, particularly for low
resourced and across distant languages.

As an alternative strategy, pivoting is a rather in-
tuitive way to approach zero-shot translation, especially
when it involves low-resourced languages. The idea is to
translate from/into under-resourced languages (Lsource and
Ltarget) by leveraging data available for a high-resourced
one (Lpivot) used as “bridge” between the two languages
(i.e. Lsource → Lpivot → Ltarget) [15]. However, re-
sults in the pivoting framework are strictly bounded to the
performance of the two combined translation engines, and
especially to that of the weaker one. In contrast, multilin-
gual models that leverage knowledge acquired from data for
different language combinations (similar to multi-task learn-
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+

Hello<2it> !

 !Ciao <eos>

<eos> !Ciao

Figure 2: NMT architecture with encoder-decoder and an attention mechanism, showing an example input "Hello !" translated
to Italian "Ciao ! using a <2it> target-forcing mechanism". The first two layers of the encoder (green) are a bidirectional RNN
with two additional forward layers. On the decoder side (blue), however, all the layers are forward. The attention mechanism is
shown for the first time step of the prediction. Input feed is used to pass the context vector as additional input to the decoder.

ing) can potentially compete or even outperform the pivoting
ones. Taking the different approaches to perform zero-shot
in consideration, in Section 4.5, we show the comparison be-
tween the zero-shot strategies (i.e direct source→target zero-
shot translation and using a pivot language) employing the
zero-shot model and the single language pair models.

4. Experiments

4.1. Training Details

For training the multilingual and the single language pair sys-
tems we used a standard encoder-decoder NMT architecture
with attention mechanism [8][16]. The encoder and decoder
sides of the network consist of four layers, where the first two
layers of the encoder are bidirectional. As shown on the right
side of Figure 2, at each time step an input-feeding mecha-
nism is applied to pass the context vector as an additional
input to the decoder by concatenating it with the embedding
of the predicted word [8]. Table 1, shows the parameters
used for training both the multilingual and single language
pair systems.

For optimization, based on preliminary experiments and fol-
lowing best practices from previous work [1], we used Adam
[17] with a learning rate of 0.001. Learning rate decay of 0.5
is applied if the perplexity does not decrease on the validation
set or the number of epoch passes 8. For reducing perplexity
and the network size, we also share the word and softmax
embedding of the decoder as suggested by Press and Wolf
[18]. To prevent overfitting [19], particularly for the training
dataset in this low-resource setting, we applied a dropout of
0.3 on all layers [20]. At time of inference, a beam search
of size 10 is utilized to balance decoding time and accuracy
of the search. Where each decoding step takes a batch of
128 evaluation set. The experiments are carried out using the

Parameter Value
RNN type LSTM
RNN size 1024

embedding 512
encoder bidirectional

encoder depth 4
decoder depth 4

beam size 10
batch size 128
optimizer adam
dropout 0.3

Table 1: Parameters used to train both single language pair
and multilingual models.

open source OpenNMT-py2 toolkit [7].
With the aim to compare the performance of the multilin-

gual models, we trained twenty single language pair models
with the same amount of training data used by each direc-
tion of the multilingual models (see Table 2 for details). For
every direction of the multilingual models and every single
pair model we report case sensitive detokenized (i.e using the
internal tokenization of the scorer) BLEU scores [21] com-
puted using mteval-v13a.pl.

4.2. Dataset and Preprocessing

In the source-target pair of the five languages considered in
this work, there are ≈ 200k parallel training sentences in
each pair. As shown in Table 2, test2010 is used for eval-
uating the models, whereas test2017 is used for comparison
purposes and as the official submission test set. For training
both the multilingual and single language pair models, the
same number of sentences are used.

2https://github.com/OpenNMT/OpenNMT-py
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Direction Training test2010 test2017
English↔ German 197,489 1,497 1,138
English↔ Italian 221,688 1,501 1,147
English↔ Dutch 231,669 1,726 1,181

English↔ Romanian 211,508 1,633 1,129
German↔ Italian 197,461 1,502 1,133

German↔ Romanian 194,257 1,626 1,121
Dutch↔ Italian 228,534 1,623 1,183

Dutch↔ Romanian 199,762 1,637 1,123
German↔ Dutch 209,169 1,729 1,174

Italian↔ Romanian 209,668 1,605 1,127

Table 2: Number of sentences used for training and evalua-
tion in a source↔target combination. The German↔Dutch
and Italian↔Romanian four language directions shown in
the third row is removed from the training data of the zero-
shot multilingual model.

To prepare the data for training, we first prepare a tokenized
version. Then, using a shared byte pair encoding (BPE)
model, we segment the tokens into sub-word units [22]. The
BPE model is trained on a joint source and target dataset cov-
ering all the language directions. For this operation we used
8, 000 BPE merging rules. A frequency threshold of 30 is
used to apply the segmentation. For choosing the BPE seg-
mentation rules, we follow the suggestion of Denkowski and
Neubig [23] in such small data condition. When training the
multilingual models, we add the target-forcing language to-
ken at the source side of each parallel data, both for train-
ing and validation sets [1]. Apart from the data set provided
by the IWSLT17 shared task [24], for the multilingual small
data condition no additional data are utilized, neither for the
preprocessing stage nor for the experiments.

4.3. Single Language Pair Models

To compare the two evaluation tasks (multilingual and zero-
shot model), we trained twenty single language pair mod-
els. As discussed in training details (4.1), these models
are trained in a similar setting with the multilingual mod-
els. Table 3, summarizes the performance each of the
twenty models on test2017. Except for the slight gain in the
Romanian→Italian direction over the results of the multilin-
gual model (see Table 4), the performance of the single lan-
guage pair models (see Table 3), are poorer in the rest of the
other 19 directions.

4.4. Multilingual Models

In this experiment, we present the multilingual 20 direction
and zero-shot 16 direction models. Note: in case of the
zero-shot model the training data for the German↔Dutch
and Italian↔Romanian directions are dropped. As in the sin-
gle language pair models, the rest of the training follows the
steps described in Section 4.1. The results shown in Table 4,
are the primary runs of the official submission for the mul-

tilingual and zero-shot small data condition tasks. The term
of comparison between these two multilingual models is fo-
cused on the four zero-shot directions. As expected, the zero-
shot model performed poorly than the multilingual model in
all of the four directions.

Particularly, we see a larger gap of 3.02 for the Ro-
manian → Italian, whereas the Italian → Romanian direc-
tion has a difference of 2.48 BLEU score. In case of Ger-
man→ Dutch and Dutch→ German the gap closes to 1.99
and 1.63 respectively. For the other 16 non-zero-shot direc-
tions, the multilingual model performed slightly better than
the zero-shot model. However, in case of Dutch→ English
and Italian→Dutch there exists a pattern where the zero-shot
model performed better. In Table 5, we separately reported
additional results for the multilingual small-data condition
task evaluated using a model from an on-time submission.
Except for the reporting purpose the results from Table 5, are
not included in any of the comparisons made in this work.

4.5. Zero-shot Vs. Pivoting

In this analysis, we compare zero-shot translation mecha-
nisms using the Zero-shot multilingual model and models
trained on single language pair. Specifically, we compared
three different results of a zero-shot translation on the IWSLT
tst2017. The first is a direct zero-shot from a source→ tar-
get language using the Zero-shot multilingual model. The
other two results are acquired through a pivoting translation
mechanism in a two-step translation. Hence, pivoting using
single language pair models requires a source→pivot and a
pivot→target model. However, this is not the case for the
Zero-shot model which assumes to already have the pivot
paired with the source and target languages. In both cases,
we use English as a pivot language. Thus, for the Italian↔
Romanian zero-shot directions we follow Italian↔ English
↔ Romanian, whereas the German ↔ Dutch translation is
done as German↔ English↔ Dutch two-step translations.

Approaches De→Nl Nl→De It→Ro Ro→It
Zero-shot 17.17 16.96 16.58 18.32

Zero-shot Pivot 17.67 16.84 17.3 19.57
Single Pair Pivot 15.3 14.9 15.22 17.2

Figure 3: A BLEU score comparison of German ↔ Dutch
and Italian↔ Romanian four language directions using three
different zero-shot translation mechanisms. The first row is a
direct zero-shot translation using the Zero-shot model, while
the last two rows show the results of the pivoting mechanism.

The results in Table 3, shows better performance of the
Zero-shot model using a pivoting mechanism (except the
Nl→De direction). In a surprising way, the pivoting using
two separate single language pair models for each transla-
tion direction perform worse than the direct zero-shot and
the pivoting zero-shot using the multilingual model in row 1
and 2.
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Single Pair En−De En−Nl En−It En−Ro De−Nl De−It De−Ro Nl−It Nl−Ro It−Ro
→ 19.84 26.41 29.90 21.41 18.93 15.52 12.52 18.47 14.71 18.67
← 24.69 30 34.03 28.03 17.93 15.47 13.81 20.13 16.78 21.71

Table 3: BLEU score on IWSLT tst2017 from twenty single language pair models that are trained separately. The bold highlighted
Romanian→Italian direction is the only gain over the multilingual system.

Multilingual En−De En−Nl En−It En−Ro De−Nl De−It De−Ro Nl−It Nl−Ro It−Ro
→ 20.88 26.72 29.6 21.95 19.16 16.84 14.62 19.33 16.54 19.06
← 25.62 29.79 34.24 28.93 18.59 16.88 15.87 20.27 18.92 21.34

Zero-shot
→ 20.67 26.11 28.86 21.54 17.17 16.28 13.93 19.76 15.88 16.58
← 25.22 30.04 34.16 28.52 16.96 16.13 15.47 20.00 17.72 18.32

Table 4: BLEU scores on the IWSLT tst2017 using the multilingual model trained on 20 directions and the zero-shot model
trained using the dataset of the 16 directions. Bold highlighted Nl→En and Nl→It are the only cases where the zero-shot model
performed better than the multilinugal.

5. Discussion

The experiments in this work showed that a single multilin-
gual system can perform better than independently trained
single language pair systems. Hence, training a single sys-
tem on the concatenation of all the language directions helps
to maximize the parameter sharing in the common repre-
sentation space. The consistent gain of the multilingual
model in 19 directions except for the slight loss for the
Romanian→Italian shows the potential behind multilingual
approaches. Unlike the scenario in previous work [1], we
showed the improvements in a low resource setting, without
any additional data to tune the system. In case of the zero-
shot model, we considered the non-zero-shot 16 directions
for comparison with the bilingual models. In an equivalent
way with the multilingual model, the zero-shot model has
shown gains over the single language pair models.

Even though the zero-shot model showed a compara-
ble performance with the multilingual model in the 16 non-
zero-shot directions, there is a slight performance degrada-
tion in all but the Dutch→English direction. For instance,
a 29.6 BLEU score for English→Italian of the multilingual
model decreases to 28.86 BLEU with the zero-shot model.
However, for the translation directions Source→English the
maximum loss for the zero-shot model is 0.41 BLEU in
the Romanian→English direction. As we expected initially,
these results reflect a condition where the number of lan-
guage pairs with English (on the encoder and decoder side)
stayed the same in both multilingual models. Whereas
the absence of the four zero-shot (source↔target) combina-
tions influenced the translation performance of the Zero-shot
model even for the language pairs seen at training time.

The pivoting experiments discussed in Section 3, is an-
other way of showing the reasonable performance of the
zero-shot model. The two-step inference (i.e source→ pivot,
and then pivot→target) for zero-shot translation provided a

better performance in three directions out of four (see Ta-
ble 3), in comparison with a direct zero-shot translation.
We observed that using English (the only language that has
a pair and better performance with all the zero-shot direc-
tions) as the bridge language played the major role for the
gain. However, as discussed in Section 3, pivoting using
two separate bilingual systems is found to be weaker (see
the third row of Table 3) in leveraging the pivot language.
This can be observed from the weaker bilingual systems in
comparison with the zero-shot model. Particularly, both in
the source→English, and as well in the English→target the
bilingual model performance is poor in comparison with the
zero-shot model, see Table 3 and 4.

Overall the reasonable performance of the zero-shot
model shows the potential of a multilingual approach. In the
subsequent comparisons using a pivoting method, it becomes
clearer that in a multilingual setting it is possible to train a
more robust model that can handle the noise from the output
of the first step translation.

6. Conclusion
In this work, we showed how a multilingual system can de-
liver better performance over bilingual systems in twenty dif-
ferent directions. In addition, we explored the performance
of a multilingual model for a zero-shot translation task in a
direct source-to-target translation and using a pivot language
in a two-step translation. The Zero-shot model proved to
be an effective way of achieving a zero-shot translation for
German↔ Dutch and Italian↔ Romanian directions, while
showing a comparable performance in the non-zero-shot di-
rections with the Multilingual model trained on the full train-
ing dataset. In addition to avoiding training several indepen-
dent systems, multilingual model showed to be beneficial in
such low-resource setting.

In future works, we plan to thoroughly investigate the
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Multilingual En−De En−Nl En−It En−Ro De−Nl De−It De−Ro Nl−It Nl−Ro It−Ro
→ 20.28 25.68 29.32 21.12 18.67 15.85 13.43 19.25 15.48 17.89
← 24.27 30.16 33.86 28 17.65 15.98 14.99 18.77 17.5 21.28

Table 5: BLEU scores for the twenty language directions evaluated using a multilingual model on tst2017 (results are using a
model from an on-time submission of the multilingual small data condition task).

behavior of the multilingual systems, seeing that the target-
forcing mechanism plays the main role in redirecting the
translation to the right target language, and susceptible to
ambiguities in a low-resource setting. In addition, we plan
to explore a better way to balance the training dataset for
the different language directions. Particularly, for achieving
a zero-shot translation we expect that finding the right lan-
guage combinations, amount of dataset, and the number of
languages require further investigation. Furthermore, a hu-
man evaluation on the outputs of the bilingual and the multi-
lingual models would be interesting to assess the translation
quality, in addition to confirming the evaluation scores, re-
ported in this work.
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Abstract

In this paper, we present KIT’s multilingual neural ma-
chine translation (NMT) systems for the IWSLT 2017 eval-
uation campaign machine translation (MT) and spoken lan-
guage translation (SLT) tasks.

For our MT task submissions, we used our multi-task
system, modified from a standard attentional neural ma-
chine translation framework, instead of building 20 individ-
ual NMT systems. We investigated different architectures as
well as different data corpora in training such a multilingual
system. We also suggested an effective adaptation scheme
for multilingual systems which brings great improvements
compared to monolingual systems.

For the SLT track, in addition to a monolingual neural
translation system used to generate correct punctuations and
true cases of the data prior to training our multilingual sys-
tem, we introduced a noise model in order to make our sys-
tem more robust. Results show that our novel modifications
improved our systems considerably on all tasks.

1. Introduction

In recent works, attention-based neural networks has been
considered the state-of-the-art approach for machine trans-
lation. More importantly, this framework can be efficiently
adapted or customized to fit in a multilingual setting, so that
one model can be trained to translate from and to multiple
languages. In this evaluation campaign, we empirically ex-
plore different architectures which have been exploited in
various previous works, in order to find the best combination
for the multilingual setting.

Specifically, we break down the neural machine transla-
tion architecture into its main components: embedding lay-
ers, encoders, decoders, attention and output layers. Our
analysis indicates which components can be shared to ben-
efit from multilingual data. We also employed an adapta-
tion strategy which is proved to be beneficial for multi-task
learning. Our best systems are the ensembles of individual
architectures.

2. Data Processing

The data is preprocessed prior to training and translation.
Sentence longer than 50 words and aligned sentence pairs
having a big difference in length are removed. Special dates,
numbers and symbols are normalized. Smartcasing is ap-
plied as well. Afterwards, we apply byte pair encoding [1]
to model the translation of rare words. We build corpora us-
ing 40K codes and 80K codes. Since we did not see a large
difference in performance, all reported results use a byte pair
encoding size of 40K.

2.1. Sentence alignment

While for the in-domain TED corpus, parallel data was pro-
vided for all directions, the out-of-domain EPPS data was
only available from and to English. For all language direction
that do not include English, no additional data was available.
In order to generate this data, we used English as a pivot lan-
guage, sentence-aligning the English sides of source-English
and English-target data in order to extract source-target sen-
tence pairs. In the two tracks that we participated in, the
Small data consists of 4.2 million sentences while the Large
data has 26 million for 20 language directions.

3. Multilingual NMT

In previous works, the encoder-decoder architecture with
attention mechanism has been used in a multilingual set-
ting [2, 3, 4, 5] with various architectural choices. While
most authors decided to share the encoder and decoder
weights between languages, the attention module remains
controversial, as [2] negates the use of attention in the multi-
task models, [4] uses explicit attention layers for each lan-
guage pair, and in [3], one single model is shared between all
pairs. In this work, we explore the possibilities of architec-
tural sharing between encoder, decoder and attention layers
across languages.
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3.1. Architectures

3.1.1. Neural Machine Translation

Our base model is the encoder-decoder with attention mecha-
nism [6, 7], in which both of the encoder and the decoder are
Long-Short Term Memory networks [8]. The attention mod-
ule is a two-layer feed-forward neural network that we found
to work better than simple dot-product or bilinear models [7].

In the multilingual setting, we investigate the effective-
ness of sharing different parts of the model. The break-down
of the neural machine translation models is illustrated as in
Figure 1

• The embedding layers project the discrete words into
dense vectors. We also consider the output linear layer
as an embedding one. These layers are language spe-
cific and their parameters cannot be shared across lan-
guages.

• The encoders encode the representation of the source
sentences into a set of vectors S. We can share this
component by using one single encoder to encode sen-
tences regardless of the language.

• The attention layer reads the encoded source S and
learns to focus on important information at every time
step which is used for decoding. The attention layer
depends on both the source and target languages.

• The decoder receives the context information from the
attention layer and learns to generate target sentences.

3.1.2. Sharing Embeddings

In this multiway, multilingual scenario, we have in total 5
languages on the both source and target sides. We want to en-
sure that the model has the same view of the embeddings on
the source and target side, i.e a German word on the source
data has the same embedding values as the same German
word on the target sentences. Therefore, we construct one
single projection matrix for each language, and use them ac-
cording to the language of the sentences in the mini-batch.

For the output layer which computes the probabilities of
the words, there are two different scenarios: if we use dis-
tinct vocabularies for each language, we then end up con-
structing five different output layers. Because of this archi-
tectural choice, each minibatch only contains sentences from
one single language pair. In the second scenario, the proba-
bility distribution is computed of all words of all languages,
then the output layer is not separated as in the first one. The
two output layer scenarios are almost equivalent, but the for-
mer is much computationally faster than the latter, because
the softmax layer required for each mini-batch is consider-
ably smaller.

3.1.3. Sharing Encoder and Decoder

The encoder and decoder are fundamentally built by recur-
rent neural networks which learn the structural dependency

Figure 1: Neural Machine Translation architecture with
shared components

of the words in sentences. For each language at the source
and at the target, we assign a separate RNN encoder and a
separate decoder. Similar to [4, 2], the specific language en-
coder weights are only updated when they are used during
learning a particular mini-batch. In the sharing scenario, we
just need to tie the weights and their gradients to the encoders
and decoders.

3.1.4. Sharing Attention Mechanism

The attention layer consists of one feed-forward neural net-
work which connects the hidden layers of the encoders with
the hidden layer of the decoders. When being shared, the
same network is used across twenty language pairs, while if
attention is not shared, each language pair is assigned to one
attention layer. Notably, sharing attention has been used in
most multilingual setups [4, 3, 5] since the number of atten-
tion layers increases quadratically with respect to the number
of language pairs, and it is believed that the shared attention
layer can benefit better from multilingual sources [4].

4. Speech Translation
4.1. Punctuation Generation

Automatic speech recognition (ASR) systems typically do
not generate punctuation marks or reliable casing. Using
the raw output of these systems as input to MT causes a
performance drop due to mismatched train and test condi-
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tions. We used a monolingual NMT system to recase, insert
proper punctuation, and add sentence boundaries to ASR out-
put where necessary before translating [9].

To train, we created parallel data where the source
sentence is the target sentence lowercased with all punc-
tuation removed. Rare words were replaced with POS
tags. The training data was randomly segmented so
that segment boundaries and punctuation types were well-
distributed throughout the corpus. For the English→German
and German→English lecture data, segment boundaries are
given, but for TED, they are not. At test time, we used a slid-
ing window of length 10 to observe each word in multiple
contexts as described in [9].

We used single-layer biLSTMs for the encoder
and decoder, with 256 hidden units for the en-
coder/decoder/attention layers. Models were trained
with Adam. We restarted the algorithm twice and applied
early stopping.

4.2. Noised Training

Our speech translation model is applied to noisy and erro-
neous speech recognition outputs, despite never having been
exposed to noisy data during the training process. The result
is a harmful mismatch between training and test data that
further aggravates the difficulty of having to transform mal-
formed inputs in the first place. Sequence-to-sequence mod-
els have been observed to be especially sensitive to corrupted
inputs due to erroneous ASR [10]. To improve robustness at
test-time, we experiment with inducing a suitable form of
noise during the training process. Specifically, we corrupt
the source side of the parallel training data by randomly in-
troducing substitution, insertion, and deletion errors. In this
way, training data is made more similar to the testing condi-
tion, and the model potentially learns to handle noisy inputs
at test-time in a more robust fashion.

The noise model is described in detail in [11]. Here, we
used the simplified noise model sampling deletions only, at a
noise rate of τ = 0.01.

5. Results and Analysis
In this section, we present a summary of our experiments we
have carried out for the IWSLT 2017 evaluation[12]. All the
reported scores are case-sensitive BLEU scores.

5.1. Machine Translation tracks

5.1.1. Training details

System overview We built a neural machine translation
framework which is customized with multiple encoders-
decoders-attention for this multilingual task using PyTorch 1.
For the small data task, we use a small network configuration
with word embedding and hidden layer size of 512 for all ex-
perimented architectures, except for the Share-All one which

1http://pytorch.org/

we found that layer size of 1024 is required to avoid under-
fitting. For the big data task, all of the models are trained
with a larger config, with layer size of 1024. We applied
Dropout between the vertical connection of the recurrent net-
works [13] with probability 0.5. We sampled minibatches
containing sentences from only one language-pair so that the
model can observe all sentences once every epoch. The pa-
rameters are updated using Adam optimizer [14] with the
gradients clipped at 5. It is noteworthy that certain models
with separated components can suffer from sparse updates
since the unused components gradients are treated normally
by Adam for the stat computation steps. We observed the
training progress with the average perplexity on the valida-
tion sets, and used the models with the lowest perplexity to
translate the test sets.

Adaptation We employed two different strategies of adap-
tation: in-domain (only applicable for large data task) and
language-specific adaptation. Concretely, for in-domain
adaptation after our models converge on the training set, we
fine-tuned them further on the TED data as proposed in [15].
For language-specific adaptation, after we obtain the best
performing model on the validation data, we continue train-
ing on each language pair. In the later section, the experi-
mental results indicate that the language-specific adaptation
is beneficial.

5.1.2. Main Results

For both tasks, we report the system performance on the test
set with the tokenized BLEU (tBLEU) as well as the case-
sensitive BLEU (cBLEU) scores. We explore three different
architectures, based on our model design described in Sec-
tion 3.1:

• Share-All : We tie all parameters of the encoders, de-
coders and attention layers across language pairs

• Share-RNN : The encoders and decoders parameters
are shared, but explicit attention layers are separated
for each language pair

• Separate-All : Encoders and decoders are language-
specific, and the attention layers are separated.

Besides, we also employed the multilingual architecture
from [5], here after referred to as ‘Language-coded Multi-
lingual’. The most similar architecture to Language-coded
Multilingual is Share-All, where all components of the NMT
system are shared. Language-coded Multilingual relies on
preprocessing steps to share information while keeping the
NMT architecture unchanged. In Language-coded Multi-
lingual, however, the output is a big softmax layer, consid-
ering all distinct target words in all languages at the same
time. Thus, Language-coded Multilingual is quite expensive
to train and decode compared to our aforementioned archi-
tecture. We reported the result of Language-coded Multi-
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Table 1: Average BLEU scores on the test set for Small task

System tokenized BLEU case-sensitive BLEU
Separate-All 24.7 22.6
+ Lang-adapted 25.8 24
Share-RNN 26.0 24.2
+ Lang-adapted 26.3 24.5
Share-All 25.2 23.5
+ Lang-adapted 26.2 24.2
Language-coded Multilingual 25.6 23.8
Share-All + Lang-adapted + Average 25.7 23.8
Ensemble 27.4 25.6

lingual only on the Small task and without any adaptation
scheme.

We also applied some strategies on top of Language-
coded Multilingual systems to effectively improve the
zero-shot translation. First we built two Language-coded
Multilingual-based Zero systems, one used 18 language pairs
excepts German↔Dutch, the other used 18 language pairs
excepts Italian↔Romanian following the architecture sug-
gested by [5]. Then we built other systems employing two
strategies: Target Dictionary Filtering and Language as a
Word Feature For greater details of those strategies, please
refer to [16].

Small task The translation scores on the test data reflected
that sharing the RNN encoders and decoders is clearly ef-
fective in multilingual setups. Both the architectures with
shared RNNs outperformed their Separate-All counterpart,
by 0.9 and 1.6 cBLEU. For the attention mechanism, we
found out that sharing the attention reduces translation per-
formance by 0.7 BLEU. Even with the shared recurrent net-
works, the context vectors from different languages are dis-
tinguishable, which is advantageous for the separate attention
layers.

Also, as illustrated from table 2, language-specific adap-
tation helped us to improve the score, which is most clearly
seen on the Separate-All model. The gain is also observed on
the other two architectures, but not significant. This finding
is in-line with [17], which shows that task-specific adaptation
is necessary in for multi-task learning with neural encoder-
decoders. Our final system to be submitted is the ensem-
ble of three models after adaptation. Notably, the ensemble
of Share-All and Share-RNN yields the same performance
as the ensemble of all six models, showing that the adapted
model dominates the others.

Meanwhile, the Language-coded Multilingual model
performed best. Unsurprisingly, the scores from that system
are similar to Share-All’s. Due to its expensive training and
different preprocessing pipeline, however, we did not attempt
to employ adaptation and ensemble on that architecture.

The language-specific adaptation method is disadvanta-

geous in that we have to store one model for each direction.
Therefore, we tried to take all of the 20 models and average
their parameters; interestingly, the averaged model performs
better than the pre-adapted one.

Large task Moving over the large data set, we observe the
same phenomenon as the small one, in which the Separate
architecture fell behind the other two. Interestingly, Shared-
All and Shared-RNN produce the same translation perfor-
mance. One reason why may be that the shared-attention
mechanism requires more data to become robust to language-
specific mappings.

Even after adaptation (TED in-domain and language spe-
cific), the addition of the Europarl corpus only manages to
improve the BLEU score by 0.4 for the best system. How-
ever, we reckon that further improvement can be achieved by
increasing the model size and better parameter search, as was
observed in the Small task.

Table 2: Average BLEU scores on the test set for Large task
All systems are language-specifically adapted

System tokenized BLEU case-sensitive BLEU
Share-All 26.9 25.1
Share-RNN 26.9 25.1
Separate-All 25.1 23.4
Ensemble 27.8 26.0

Zero-shot task. We conducted the zero-shot trans-
lation for 4 directions asked by IWSLT’17 organizers:
German↔Dutch and Italian↔Romanian. The results are
shown in Table 3. We can see that Language as a Word Fea-
ture greatly improves our zero-shot translation systems.

5.2. Spoken Language Translation tracks

Our main translator for this task is the multilingual Share-All
model trained with large data (which is also adapted on TED

_____________________________________________________________
Proceedings of the 14th International Workshop on Spoken Language Translation

Tokyo, Japan, December 14th-15th, 2017

45



System DE→NL NL→DE IT→RO RO→IT
dev2010 tst2010 dev2010 tst2010 dev2010 tst2010 dev2010 tst2010

Zero [5] 15.87 19.46 14.03 19.59 11.61 15.44 16.18 17.11
Zero Filtered Dict 15.79 19.48 13.96 19.59 11.52 15.45 16.21 17.20
Zero Lang Feature 16.65 19.68 14.50 20.67 12.70 16.22 17.26 17.79

Table 3: Effectiveness of proposed strategies on performance of zero-shot translation systems

data as well as language-specific data). However, there is a
mismatch between the cleaned text data which is used for MT
training and the noisy speech recognition output which can
be disfluent, repetitive or lack of punctuations. Therefore,
our effort to alleviate this problem is to apply a noisy model
on the TED training data and then to adapt the translation
models, as described in section 4.2.

The model is tuned with noisy data for ten more epochs
(due to sampling, the data is actually slightly modified after
each epoch) with learning rate of 0.0001. We conduct exper-
iments on tst2013 sets on two directions: German→English
and English→German. The experimental results are shown
in Table 4 with case-sensitive BLEU scores. Using the noise
models, we can improve the translation scores on both test
sets by 0.5 and 0.3 respectively.

5.3. Other findings

In this section, we report the experimental findings that were
not considered in the submission systems, including the con-
figurations that we did not afford to finish.

Model capacity Initially we used layer size of 512 for all
models for the Small task. With such capacity, the Separate
was indeed the best model. However, when we scale the layer
size to 1024, both of the two shared models improved dras-
tically while the Separate model suffered from over-fitting
despite of the high Dropout value. We express that, in order
to fit the amount of training data that is quadratically larger
than a single direction, the model capacity also needs to be
scaled accordingly.

Such observation can also potentially explain the lacklus-
ter of the models trained on Large data. Such amount of data
probably requires a larger/deeper model to utilise, which has
been empirically experimented by [3]. However, as the larger
model is much slower to train, we decided to keep the same
configuration to have a reasonable training time.

Dropout Dropout is also one of the important factor to the
model quality. We found out that on the small data, albeit
the training data is 20 times larger than a single direction,
a larger dropout value of 0.5 helps the model to regularise
better than lower values such as 0.2, which is applicable for
all architectures.

BPE size In the earlier experiments on the TED data, we
tried out different BPE sizes of 40000 and 80000 merging

operations, which were done over the concatenated data of
all languages. We did not see any improvement of translation
and proceeded to use 40000 in the later experiments.

Table 4: BLEU scores on tst2013 for Spoken Language
Translation task

System tst2013 EN-DE tst2013 DE-EN
baseline 17.9 15.7
noise 18.4 16.0

6. Conclusions
In this paper, we described several innovative techniques
that we applied to our multilingual neural machine transla-
tion systems, submitted to the IWSLT 2017 Evaluation Cam-
paign. In order to use a single multilingual system instead
of many individual systems, we tailored a standard neural
translation framework to perform multi-task learning, where
each language takes the role of one task. By doing so, we in-
vestigated different architectures with different shared com-
ponents. Our experiments show that ensembling those sys-
tems improves the translation performance of the multilin-
gual task further. In addition, a new training technique, the
noise model, proved to be beneficial in the SLT task by mak-
ing the translation system more robust on spoken data.
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Abstract
In this paper, we describe GTCOM’s neural machine transla-
tion(NMT) systems for the International Workshop on Spo-
ken Language Translation(IWSLT) 2017. We participated in
the English-to-Chinese and Chinese-to-English tracks in the
small data condition of the bilingual task and the zero-shot
condition of the multilingual task. Our systems are based
on the encoder-decoder architecture with attention mecha-
nism. We build byte pair encoding (BPE) models in paral-
lel data and back-translated monolingual training data pro-
vided in the small data condition. Other techniques we ex-
plored in our system include two deep architectures, layer
nomalization, weight normalization and training models with
annealing Adam, etc. The official scores of English-to-
Chinese, Chinese-to-English are 28.13 and 21.35 on test set
2016 and 28.30 and 22.16 on test set 2017. The official
scores on German-to-Dutch, Dutch-to-German, Italian-to-
Romanian and Romanian-to-Italian are 19.59, 17.95, 18.62
and 20.39 respectively.

1. Introduction
This paper describes the submission of the Global Tone Com-
munication Technology Co., Ltd. (GTCOM) for the first
participation in IWSLT evaluation. We participated in the
zero-shot condition in the multilingual task and the English-
to-Chinese and Chinese-to-English tracks in the small data
condition of the bilingual task. Our neural machine transla-
tion systems are developed as encoder-decoder architecture
[1] with attention mechanism [2] and the experiment toolkit
we used in the evaluation is Nematus [3].

The intuition of this participation is to verify whether the
model architechture and techniques we applied in our generic
system 1 with large training data is also effictive in spo-
ken language domian with small training data. In bilingual
task, since the training data is very small in both Chinese-
to-English and English-to-Chinese directions, Chinese word
segmentation, tokenization, binary pair encoder(BPE), dif-
ferent size of hidden layer, deep transition model and back-
translation are involved in our experiments. In multilingual
task, we uesd different pre-processing strategy and annealing
Adam to enhance the translation performance.

This paper is arranged as follows. We firstly describe the
1Our generic translation system covers 10 languages and is available at

http://translateport.yeekit.com:4305/index.html

task, including the data size and evaluation method. Then we
introduce the techniques used in our system. After that, we
present the experiments for the two task, including data pre-
processing and model architecture. Finally, we analysis the
experiment results and draw the conclusions.

2. Task Description

The task focuses on bilingual and multilingual text transla-
tion in spoken language domain; the provided data is mainly
collected form TED talks. We participated in Chinese-to-
English and English-to-Chinese directions of the bilingual
task, as well as zero-shot translation of the multilingual task.

2.1. Bilingual task

For the bilingual task, we focused on Chinese-to-English and
English-to-Chinese directions of the small data condition,
which only the in-domain training and development data
is allowed to use. The detail information about the data is
shown in Table 1. In addition, Chinese texts were evaluated
at character level. Before evaluation, texts are splitted into
Chinese characters, but sequences of non-Chinese characters
are kept as they are.

2.2. Multilingual task

For multilingual task, we focused on zero-shot translation
which using one model to translate any pair between English,
Dutch, German, Italian and Romanian trained with the in-
domain training and development data. In addition, training
data synthesis from other pair and pivoting are allowed as
contrastive conditions. But the directions, which included
Dutch-to-German, German-to-Dutch, Italian-to-Romanian
and Romanian-to-Italian, must be excluded from the train-
ing and development sets. The statistic of the parallel data is
shown in Table 2.

3. Methology

This section introduces the techniques we used in our sys-
tems.
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Table 1: Number of sentences summary for in-domain training and development data for bilingual task.

NMT direction training data development data monolingual data(target)
2013 2014 2015

en-zh 231K 1,372 1,297 1,205 520K
zh-en 231K 1,372 1,297 1,205 234K

Table 2: Number of sentences summary for in-domain training and development data for zero-shot multilingual task.

language de-en de-it de-ro en-it en-nl en-ro it-nl nl-ro
training data 204K 203K 200K 230K 236K 219K 232K 205K

development set 1,138 1,133 1,121 1,147 1,181 1,129 1,183 1,123

3.1. Layer normalization and weight normalization

Layer normalization [4] is helpful to accelerate the conver-
gence of model and improve the performance. [5] showed
layer normalization is very effective in neural machine trans-
lation, especially with deep model. It is known that deep
model for neural machine translation is difficult to converge.
Weight normalization [6] is another method to accelerate the
convergence and improve the performance, especially for re-
current models. Therefore, we used layer normalization in all
the models and explore whether weight normalization play a
further role on the models with layer normalization in neural
machine translation.

3.2. Subword segmentation

To avoid unknow words, we used BPE-based splitting algo-
rithm [7] to segment the word sequence to subword units se-
quence. This algorithm iteratively merges the most frquent
pair of symbols into a single symbol. Therefore, the most
frequent words in the corpus remain intact while the rare
words are segmented into subunits. Joint BPE were used for
the zero-shot condition, while we trained two separate BPE
models for bilingual task due to different alphabet shared.

3.3. Back-translation

Monolingual in-domain data is also important for small train-
ing data condition. Monolingual data was back-translated
with a shallow model trained with parallel data from target
to source [8]. So we get translated source text and in-domain
target text as synthetic parallel data. Then we mixed syn-
thetic data and provided parallel data together to train our
model.

3.4. Deep model

Deep model always gets better performance but is harder to
converge. We use two architectures, stacked model [9] and
deep transition model [10], which has been used in WMT
2017 by [5]. Even though the data size in [5] is larger than
this task whose parallel data size is only 231K, deep model
was still used to explore the adaptation on small data condi-

tion.

3.5. Annealing Adam

A strong baseline [11] gives a training trick, annealing Adam,
which is significantly faster than SGD with annealing and
obtains better performance. Adam [12] is an optimization al-
gorithm, which applies momentum on a per-parameter basis
and automatically adapts step size subject to a user-specified
maximum. It speeds up the convergence and is a popu-
lar choice for researches. However, the models with Adam
are slightly underperform compared to annealing SGD [13].
Thus, we halved learning rate after early stop and trained
from the previous best model. We did this operation twice.

4. Experiment setup

4.1. Bilingual task

In this small data condition, we trained our systems using
the in-domain data sets. Althrough, Chinese texts are eval-
uated at character level, we used Jieba [14], a Chinese word
segmentation tool, to segment Chinese text in both parallel
data and monolingual data. For English text, tokenizer and
truecase in Moses [15] toolkit were applid. We applied BPE
on both tokenized Chinese and English text. Before that, we
calculated the word frequency on the training data and then
get the number of words whose frequency is larger 10. Thus,
the merge operation is calculate as
Noperation = number of words(word frequency > 10)
In our experiments , merge operation for English is set to
18000 and to 20000 for Chinese.

We used a 2-layer model trained with in-domain parallel
data to translate the monolingual data as synthetic parallel
data and mixed it with real parallel data. Translating Enlish
monolingual data and Chinese monolingual data took about
4 days.

Our neural machine transition system is an encoder-
decoder leverage GRU [16] cell in each layer with attention
mechanism. The main model configuration is shown in Ta-
ble 3. The mini-batches size is set to 64. The models were
optimized using Adam with initial learning rate 0.0001 dur-
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Table 3: Model configuration for bilingual task.

Type value
English vocabulary size 19623
Chinese vocabulary size 25377

word embedding 512
hidden units 1024

embedding dropout 0.2
hidden dropout 0.2
source dropout 0.1
target dropout 0.1

layer normalization True
maximum sentence length 100

ing training procedure, we also shuffed the training data after
each epoch. For decoding we set the beam size to 10. In gen-
eral, we trained 4-layer model and deep transition model with
transition depth 4 for real parallel data and synthetic parallel
data. Beside, the right-to-left model [17] with 4-layer ar-
chitecture and deep transition architecture respectively were
trained to rerank the n-best-list. It[17] showed a complemen-
tary target context will be seen at each time step and therefore
the expected averaged probabilities will be more robust. In
detail, We increase the size of the n-best-list to 50 for the
reranking experiments.

4.2. Zero-shot condition in multilingual task

Different from bilingual task, in this zero-shot condition,
the training data set consists of in-domain data from any
pair between in English, Dutch, German, Italian and Roma-
nian, except German-to-Dutch, Dutch-to-German, Italian-to-
Romanian and Romanian-to-Italian data. We applied tok-
enizer and truecase script in Moses toolkit to preprocess all
the corpora.

Zero-shot model aims to translate different langauage di-
rections using the same model. Therefore, BPE segmentation
is more useful than bilingual task. It can not only reduce the
vocabulary size but also reduce the unknown words drasti-
cally. The merge operation of joint BPE model is 39500.

At the end of pre-processing, we add a label which con-
sists of source language label and target language label at the
start of each source sentence according [18]. Our processing
for the language label is slightly different from [18]. And
the model can translate from one specified source language
to another specified target language learned from this label,
although the model architecture didn’t change.

Similar to bilingual task, the main model configuration is
shown in Table 4. The mini-batch size is set to 80. And mod-
els were trained with Adam with initial learning rate 0.0001,
the training data will be shuffed during each epoch. The
Beam size in decoding is set to 10. We generally trained
shallow model and deep transition model whose transition
depth is 4 for all in-domain data. Beside, the right-to-left
model with shallow model and deep transition architecture

Table 4: Model configuration for multilingual task.

Type value
Source vocabulary size 40000
target vocabulary size 40000

word embedding 512
hidden units 1024

embedding dropout 0.2
hidden dropout 0.2
source dropout 0.1
target dropout 0.1

layer normalization True
maximum sentence length 80

Table 5: Results on Official Test Sets for binglingual task.

direction tst2016 tst2017
en-zh 28.13 28.30
zh-en 21.35 22.16

respectively were trained to rerank the n-best-list, which is
the same in bilingual task.

5. Result and analysis
5.1. Results of bilingual task

Table 6 shows the case-insensitive BLEU score in develop-
ment set of Chinese-to-English and Table 7 is for English-
to-Chinese. We observed the improvement of 0-0.81 BLEU
score from annealing Adam training trick and 0 to 0.88
BLEU score from training with a mix of parallel and syn-
thetic data. But we find a fluctuation of -0.57 to 0.81 BLEU
score from weight normalization especially in deep transition
model. Weight normalization is not robust based on layer
normalization in this condition. Ensembling of the indepen-
dent models gives further imporvement by 0.97-1.28 BLEU
score. Finally, our submitted system was reranked by right-
to-left models with 50 n-best-list output of ensembling de-
coding of left-to-right models. This improved 0.3 to 0.55
BLEU score. Table 5 shows the official test results.

5.2. Results of multilingual task

Table 8 shows the case-insensitive BLEU score for develop-
ment set of the zero-shot condition. It can be observed that
adopting annealing Adam training algorithm also gets im-
provement of 0.28 to 0.36 BELU points, while weight nor-
malization gets the worse performance. Ensemble decod-
ing improves 1.93 BLEU points, compared shallow model.
Then, we found in this condition, right-to-left reranking
didn’t improve the performance of model. We think that the
zero-shot condition is a complex problem, which can trans-
late from multilingual source language to multilingual target
language. The model of right-to-left reranking may be hard
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Table 6: Case-insensitive BLEU score in development set of Chinese-to-English in small data condition. WN means weight
normalization and SD means synthetic data.

tst2013 tst2014 tst2015 average
2 layers 20.32 18.07 21.48 20.03

+ annealing Adam 20.85 18.39 22.04 20.47
4 layers 20.89 17.91 21.87 20.33

+ annealing Adam 20.81 17.91 22.24 20.33
4 layers with WN 20.95 17.99 21.98 20.43
+ annealing Adam 21.24 18.1 21.81 20.48
4 layers with SD 21.05 18.4 21.94 20.49

+ annealing Adam 20.94 18.57 22.41 20.65
4 layers with SD and WN 21.34 18.72 22.5 20.91

+ annealing Adam 21.53 18.72 22.46 20.98
Deep transition 20.68 17.56 21.49 19.97

+ annealing Adam 21.11 17.66 21.64 20.28
Deep transition with WN 20.71 17.98 21.96 20.78

+ annealing Adam 21.40 18.33 22.30 20.80
Deep transition with SD 21.49 18.1 22.40 20.73

+ annealing Adam 21.75 18.83 22.77 21.16
Q Deep transition with SD and WN 21.31 18.78 22.07 20.78

+ annealing Adam 21.86 18.64 22.23 20.97
ensemble 22.83 19.72 23.73 22.13

+ r2l reranking 23.02 19.94 24.26 22.43

Table 7: Case-insensitive BLEU score in development set of English-to-Chinese in small data condition. WN means weight
normalization and SD means synthetic data.

tst2013 tst2014 tst2015 average
2 layers 23.71 21.03 26.80 23.83

+ annealing Adam 24.3 21.45 26.69 24.14
4 layers 23.94 21.63 27.34 24.30

+ annealing Adam 24.05 21.90 27.26 24.37
4 layers with WN 24.27 21.61 27.64 24.54
+ annealing Adam 24.46 21.8 27.42 24.54
4 layers with SD 24.43 21.89 28.00 24.74

+ annealing Adam 24.73 21.73 28.14 24.85
4 layers with SD and WN 24.39 21.47 27.61 24.47

+ annealing Adam 24.69 21.69 28.04 24.79
Deep transition 23.83 21.51 27.15 24.13

+ annealing Adam 23.75 21.37 27.06 24.03
Deep transition with WN 23.85 21.77 27.66 23.74

+ annealing Adam 24.21 21.92 27.43 24.49
Deep transition with SD 24.04 21.53 27.43 24.31

+ annealing Adam 24.47 22.1 27.98 24.82
Deep transition with SD and WN 23.7 21.7 26.5 23.74

+ annealing Adam 24.41 21.64 27.65 24.55
ensemble 25.86 23.21 29.41 26.13

+ r2l reranking 26.21 23.61 30.35 26.68
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Table 8: Case-insensitive BLEU score in development set of the zero-shot condition. WN means weight normalization.

en-de en-nl en-it en-ro de-en de-it de-ro nl-en nl-it
shallow model 28.29 32.22 29.67 27.56 34.43 20.60 19.47 38.01 22.42
+ annealing Adam 28.79 32.70 30.13 28.03 34.46 20.9 19.76 38.27 22.43
shallow model with
WN

27.68 32.63 29.82 27.32 34.15 20.50 19.36 37.78 21.90

+ annealing Adam 27.79 32.56 30.15 27.72 34.42 20.82 19.81 38.03 22.05
deep transition 29.43 32.79 30.86 28.96 35.33 21.93 20.54 39.45 23.48
+ annealing Adam 29.9 32.85 31.56 28.78 35.72 22.18 20.91 39.79 23.67
deep transition with
WN

28.85 33.19 30.98 28.37 34.83 22.07 20.28 38.96 23.06

ensemble 29.82 34.22 31.98 29.39 36.50 22.8 21.32 40.31 23.84
+ r2l reranking 29.60 32.70 31.58 28.77 35.76 22.48 21.45 39.50 24.22

nl-ro it-de it-en it-nl ro-de ro-en ro-nl average
shallow model 20.79 20.75 34.22 22.1 22.05 35.81 23.15 27.28
+ annealing Adam 21.31 20.85 34.61 22.22 22.26 36.06 23.34 27.56
shallow model with
WN

21.15 20.64 34.25 21.87 22.09 35.62 22.58 27.3

+ annealing Adam 20.78 20.29 33.71 22.04 21.63 35.31 22.48 27.05
deep transition 22.13 21.51 35.25 22.99 22.84 37.06 23.29 28.3
+ annealing Adam 22.16 22.20 35.99 23.29 23.16 37.71 23.53 28.66
deep transition with
WN

21.83 21.55 35.13 22.86 22.73 37.09 23.63 28.17

ensemble 22.93 22.56 36.15 23.93 23.35 38.05 24.49 29.21
+ r2l reranking 22.74 24.41 35.74 23.76 23.68 37.47 24.61 28.99

Table 9: Results on Official Test Sets for multilingual task.

direction en-de en-nl en-it en-ro de-en de-it de-ro de-nl nl-en nl-it
BLEU 23.08 29.08 32.84 23.89 28.04 18.56 16.23 19.59 32.78 21.21
Nist 5.86 6.81 7.22 5.91 6.85 5.36 4.69 5.57 7.42 5.72
Ter 60.63 51.46 47.63 58.81 51.41 63.43 69.04 61.26 47.34 60.83

direction nl-ro nl-de it-de it-en it-nl it-ro ro-de ro-en ro-nl ro-it
BLEU 18.11 17.95 18.09 37.84 21.80 18.62 17.95 31.79 20.02 20.39
Nist 4.97 5.06 5.09 8.10 5.78 5.03 5.06 5.59 5.59 5.57
Ter 66.55 67.02 67.28 41.05 60.09 65.53 67.02 41.22 67.81 61.11
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to converge. In other words, we didn’t get a good enough
model of right-to-left reranking. Therefore, our submission
was the results of ensemble decoding. And the result of the
official test set is show in Table 9.

6. Summary
We presented our neural machine transition system for both
bilingual task and multilingual task. The intution is mostly
coming from the training of our generic translation system
and the experiments shows the approaches we applied in our
generic model is also effective in spoken langauge domain.
Overall, the annealing Adam training algorithm and deep
model always get a better performance, while weight nor-
malization is not robust in this experiment. And right-to-left
reranking for zero-shot model didn’t help.
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A. V. M. Barone, J. Mokry, and M. Nadejde, “Ne-
matus: a toolkit for neural machine translation,”
CoRR, vol. abs/1703.04357, 2017. [Online]. Available:
http://arxiv.org/abs/1703.04357

[4] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normal-
ization,” arXiv preprint arXiv:1607.06450, 2016.

[5] R. Sennrich, A. Birch, A. Currey, U. Germann, B. Had-
dow, K. Heafield, A. V. M. Barone, and P. Williams,
“The university of edinburgh’s neural mt systems for
wmt17,” arXiv preprint arXiv:1708.00726, 2017.

2http://www.2020nlp.com/
3http://www.gtcom.com.cn/

[6] T. Salimans and D. P. Kingma, “Weight nor-
malization: A simple reparameterization to accel-
erate training of deep neural networks,” CoRR,
vol. abs/1602.07868, 2016. [Online]. Available:
http://arxiv.org/abs/1602.07868

[7] R. Sennrich, B. Haddow, and A. Birch, “Neural ma-
chine translation of rare words with subword units,”
arXiv preprint arXiv:1508.07909, 2015.

[8] ——, “Improving neural machine translation
models with monolingual data,” arXiv preprint
arXiv:1511.06709, 2015.

[9] J. Zhou, Y. Cao, X. Wang, P. Li, and W. Xu,
“Deep recurrent models with fast-forward con-
nections for neural machine translation,” CoRR,
vol. abs/1606.04199, 2016. [Online]. Available:
http://arxiv.org/abs/1606.04199

[10] A. V. M. Barone, J. Helcl, R. Sennrich, B. Haddow, and
A. Birch, “Deep architectures for neural machine trans-
lation,” CoRR, vol. abs/1707.07631, 2017. [Online].
Available: http://arxiv.org/abs/1707.07631

[11] M. J. Denkowski and G. Neubig, “Stronger baselines
for trustable results in neural machine translation,”
CoRR, vol. abs/1706.09733, 2017. [Online]. Available:
http://arxiv.org/abs/1706.09733

[12] D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[13] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,”
arXiv preprint arXiv:1409.0473, 2014.

[14] J. Sun, “jiebachinese word segmentation tool,” 2012.

[15] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, et al., “Moses: Open source toolkit
for statistical machine translation,” in Proceedings of
the 45th annual meeting of the ACL on interactive
poster and demonstration sessions. Association for
Computational Linguistics, 2007, pp. 177–180.

[16] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares,
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Abstract

We describe here our Machine Translation (MT) model and
the results we obtained for the IWSLT 2017 Multilingual
Shared Task. Motivated by Zero Shot NMT [1] we trained
a Multilingual Neural Machine Translation by combining all
the training data into one single collection by appending the
tokens: ”< 2xx >” (where xx is the language code of the
target language) to the source sentences in order to indicate
the target language they should be translated to. We ob-
served that even in a low resource situation we were able
to get translations whose quality surpass the quality of those
obtained by Phrase Based Statistical Machine Translation by
several BLEU points. The most surprising result we obtained
was in the zero shot setting for Dutch-German and Italian-
Romanian where we observed that despite using no parallel
corpora between these language pairs, the NMT model was
able to translate between these languages and the translations
were either as good as or better (in terms of BLEU) than the
non zero resource setting. We also verify that the NMT mod-
els that use feed forward layers and self attention instead of
recurrent layers are extremely fast in terms of training which
is useful in a NMT experimental setting.

1. Introduction
One of the most attractive features of neural machine transla-
tion (NMT) [2, 3, 4] is that it is possible to train an end to end
system without the need to deal with word alignments, trans-
lation rules and complicated decoding algorithms, which are
a characteristic of statistical machine translation (SMT) sys-
tems [5]. However, it is reported that NMT works better than
SMT only when there is an abundance of parallel corpora.
In the case of low resource domains, vanilla NMT is either
worse than or comparable to SMT, due to overfitting on the
small size of parallel corpora [6].

Although PBSMT is superior to NMT in low resource
situations it leads to large models (phrase and reordering ta-
bles and language models) and thus is not an attractive ap-
proach, especially because it cannot lead to the development
of models that are end to end. Recently, Google’s multilin-
gual system was made available to the public which was able

to perform Zero Shot translation [1]. Although, it is possi-
ble to train a multilingual NMT model using a multi encoder
and decoder setup [7], such a model contains a massive num-
ber of parameters and does not enable interaction between
languages by means of shared encoders and decoders. More-
over, it is clear that the basic attention based encoder-decoder
model is more than capable of accommodating multiple lan-
guages while keeping the number of parameters constant.
Multilingual NMT (MLNMT) models are inherently more
powerful than bilingual models especially when the target
language for most pairs is common.

One major problem with MLNMT models is that they
take a lot of time (ranging from several days to a few weeks)
to train and thus it is very difficult to test out changes in ap-
proaches. This is because the original models are recurrent
which need O(N) time for encoding followed by O(N) for de-
coding. Recently, models that use feed forward layers instead
of recurrent layers [8] were proposed which are roughly an
order of magnitude faster than their recurrent predecessors.
Even without ensembling, they have also been shown to sur-
pass ensembles of recurrent models by a significant amount.
In a situation where time is limited and computing power
(GPUs) such models (which we abbreviate as AIAYN1) can
be a boon. It is important to note that although we refer to
AIAYN as a feed forward model, the concept of self-attention
is the central aspect of the overall architecture.

Since we had limited , we decided to work with the pre-
processing based approach (prepending < 2xx > tokens to
source sentences) to train our multilingual AIAYN model.
Internally, we compared our translations against those ob-
tained using a PBSMT model and found them to be much
superior.

2. Related Work
Our work can be viewed as an extension of Google’s mul-
tilingual NMT work [1] with the main difference being that
we used AIAYN [8]. Although, recurrent models that use
multiple encoders and decoders [7] are an option, such mod-
els contain too many parameters and take even more time to

1The full form is Attention Is All You Need
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train than bilingual models.

3. System Description
We trained MLNMT models for both the zero shot and non
zero shot settings. For our models we followed the pre-
processing approach [1]. For the non zero shot setting,
for each language pair (20 pairs for the all pairs setting)
we prepended the source language sentence with the tokens
”< 2xx >” where xx could be any of the language codes for
the languages under consideration. Following this we sim-
ply merged the corpora. Typically, it is a standard practice to
oversample the smaller corpora but since all the corpora pro-
vided, were of the same size (in terms of number of lines),
we skipped this step. For the zero shot setting we simply
excluded the parallel corpora for the (bidirectional) language
pairs German-Dutch and Italian-Romanian. While decoding,
the input sentences are prepended with the token ”< 2xx >”
in order to force the model to translate to the target language
whose language code is indicated by ”xx”. Apart from this
we made no modifications to the NMT architecture or the
decoding procedure.

We also created a multilingual PBSMT model by using a
simple trick. We simply prepended every token in the source
language sentences with the token ”xx#” where xx indicates
the target language. We also trained a joint language model
on a concatenated corpora of the target side of all languages.
This was enough to train a single multilingual SMT model.
The working of such a model is as follows: Since each source
word is marked by the ”xx#” token, the phrase table contains
unique entries for phrases for every language pair. During
testing time, to translate from Dutch to Romanian, the in-
put sentence will contain words marked with ”ro#” and this
sentence will match phrase pairs that are extracted from the
Dutch-Romanian parallel corpus. Despite the non standard
nature of this approach, it works well in practice. Since our
focus was on NMT models we did not pursue this approach
further, especially because it cannot be used to perform zero
shot translation.

4. Experimental Settings
We worked on training a single NMT model for all the lan-
guage directions in the multilingual task. The languages in-
volved are German, English, Romanian, Italian and Dutch
for which the language codes are de, en ,ro, it and nl” re-
spectively. English, German and Dutch are Germanic lan-
guages whereas Romanian and Italian are Romance lan-
guages. Since they are all European languages and share
cognates and grammatical structure, a multilingual model by
means of parameter sharing can benefit greatly due to the
language similarity.

For our experiments we used the parallel corpora pro-
vided to us by the organizers. For the non zero shot setting
there are 20 parallel corpora for each language direction (5
languages and 4 targets per language leading to 20 pairs).

For the zero shot setting (where the Italian-Romanian and
German-Dutch corpora were to be excluded) we used only
16 out of the 20 parallel corpora. Kindly refer to the work-
shop overview paper for details on sizes. Apart from the of-
ficial test set for this year’s shared task we also evaluated our
models using the ”tst2010” test set that was provided to us
along with the training data. Since the training, development
and test sets are available in xml format we did preprocessing
in the following order2:

1. Remove all XML tags so as to leave only raw sen-
tences

2. Tokenize using the tokenizer in Moses3.

3. Learn and apply a truecaser model4 which deals with
capitalization.

4. Optional 1: For the PBSMT models learn and apply a
joint BPE model5 to reduce data sparsity.

Following these steps we performed the following pre-
processing steps to enable multilingual translations in a black
box setting. For the PBSMT model we prepended every
source language word with the token ”xx#” corresponding
to the target language. For the NMT models we prepended
each source language sentence with the token ”< 2xx >”.

For training we used Moses6 for the PBSMT model and
Tensor2Tensor’s implementation of AIAYN7 for the NMT
model.

For PBSMT the settings are:

• Subword vocabulary size of 32000 before appending
the ”xx#” tokens.

• A joint 7 gram KenLM model8 [9] to account

• Default training settings for the phrase tables.

• Default settings for tuning using MIRA via MERT.

For NMT the settings are:

• Subword vocabulary size of 32000 which the subword
tokenizer in the AIAYN implementation generates au-
tomatically.

• Embeddings and layer outputs of sizes 512 and the
feed forward layer with a hidden later size of 2048.

2To generate the submission files we simply undid the preprocessing in
the reverse direction

3https://github.com/moses-smt/mosesdecoder/blob/master/
scripts/tokenizer/tokenizer.perl

4https://github.com/moses-smt/mosesdecoder/blob/master/
scripts/recaser/truecase.perl

5https://github.com/rsennrich/subword-nmt
6https://github.com/moses-smt/mosesdecoder
7https://github.com/tensorflow/tensor2tensor/tree/master/tensor2tensor
8https://github.com/kpu/kenlm
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L1/L2 de en it nl ro
de - 26.45 17.54 19.64 16.27
en 23.25 - 30.79 28.80 24.66
it 19.10 34.73 - 22.32 20.60
nl 20.27 30.49 19.86 - 17.65
ro 17.94 29.58 21.89 20.24 -

Table 1: The official evaluation results for the multilingual
NMT model task (non zero shot case).

L1/L2 de en it nl ro
de - 27.08 17.67 20.31 16.08
en 23.63 - 30.99 30.18 24.49
it 19.20 35.28 - 22.76 20.37
nl 19.68 30.63 20.74 - 17.74
ro 18.40 30.23 21.85 20.47 -

Table 2: The official evaluation results for the multilingual
NMT model task ( zero shot case). The results for the zero
shot pairs are marked in bold.

• Adam optimizer with a weight decay on the learning
rate that increases for 16000 iterations and then de-
creases.

• Beam of size 4 with an alpha value of 0.6 for decoding
the test sets.

We trained our models for 400000 iterations which is
equivalent to roughly 10 epochs that required only 3-4 days
on 5 GPUs. With 8 GPUs which is the default setting in the
original AIAYN paper we can expect faster convergence. We
did experience a slight amount of overfitting and could have
eliminated it with dropout but will pursue such activities in
the future. We also did not average the model checkpoints
before decoding and instead only took the final model9 for
decoding. Decoding for all language pairs was done in par-
allel on multiple GPUs and took roughly an hour for all the
test sets. The automatic evaluation measure we used was
BLEU10 [11] which we compute for the detokenized sen-
tences.

5. Results
First we give the results of the official evaluation for the non
zero shot and zero shot settings in Tables 1 and 2 respectively
followed by the evaluations on the ”tst2010” test set which
was provided along with the training data in Table 3.

Since we are not aware of the BLEU scores for the runs
submitted by the other participants we are unable to comment
on how well our results are compared to others. However, we
do have interesting observations regarding our zero shot re-

9Such models overfit on the training data since they have a slightly lower
BLEU on the development set than some of the past checkpoints.

10This is computed by the multi-bleu.pl script, which can be downloaded
from the public implementation of Moses [10].

L1/L2 de en it nl ro

de -
29.63
34.98

17.57
21.37

23.51
23.69

14.49
18.96

en
21.70
27.81 -

24.04
29.07

27.25
30.91

21.38
26.65

it
15.88
21.37

28.89
34.58 -

18.48
21.83

19.46
20.72

nl
21.57
24.45

34.79
38.86

18.84
23.02 -

15.99
20.68

ro
15.96
21.81

31.10
37.10

22.65
24.07

18.57
23.01 -

Table 3: The results for the ”tst2010” set which we used as a
test set for our local evaluations. Each cell contains 2 scores
the one on the top is for the multilingual PBSMT system and
the one on the bottom is for the multilingual NMT system.

sults. Despite having no parallel corpora between the Italian-
Romanian and German-Dutch language pairs, the zero shot
NMT model performs almost as well for translations between
these pairs. For German-Dutch the non zero shot model gives
a BLEU of 19.64 whereas the zero shot model gives a BLEU
of 20.31 which is a significant improvement. For the reverse
direction though, the non zero shot model gave a BLEU of
20.27 against 19.68 BLEU for the the zero shot model. Al-
though, there is a drop in translation quality it is not large.
For the Italian-Romanian pair (both directions) the differ-
ences between the two settings is insignificant.

Zero Shot NMT between a language pair is known to
give relatively lower BLEU scores as compared to a non
zero shot scenario and thus the outcomes above puzzled us
initially. We decided to inspect the parallel corpora for any
oddities. After some preliminary analysis we discovered that,
although, the corpora are available in their bilingual form
there are about 150,000 N-lingual sentences in the overall
collection. For example, out of approximately 250,000 sen-
tences for Italian-Romanian, 150,000 (60%) sentences con-
tain translations to other languages. This means that even
if the Italian-Romanian parallel corpus is excluded from the
training set, there is an indirect parallel corpus of 150,000
sentences between the two languages. This also means that
this setting is not truly zero shot because of the existence of
the 150,000 multilingual sentences. It would be interesting
to see what would happen in case all the bilingual corpora
are disjoint 11.

Apart from this we also see that the zero shot models
performed slightly better than the non zero shot models in a
number of cases and we believe that since the non zero shot
models had to work with a larger number of language pairs,
the training process was no effective enough. It is possible
to argue that using models with more parameters might be a
good idea but we have already mentioned that our models ac-
tually overfit on the training data which means that it is better

11In other words, these corpora come from different parts of the TED
corpora with zero overlaps in their content.
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consider approaches where we design better training sched-
ules or work with better models that can incorporate multiple
languages better than the kind of models we are currently us-
ing.

In Table 3 we can see how well the NMT system we
trained is compared to the PBSMT system. In most cases
the difference is over 4 BLEU points. The multilingual PB-
SMT system is simply a hack, as is the NMT system, in the
sense that we only concatenated the corpora. However in the
NMT system multiple languages share a common represen-
tation space which allow them to interact with each other and
elevate the overall translation quality.

Although we do not mention it in the experimental sec-
tion we did experiment with training a multilingual RNN
model using Kyoto NMT12 [12]. The model size was roughly
the same but even after 2 weeks of training we were unable
to obtain peak performance in terms of BLEU. Overall, we
tried training models for about a month after which we gave
up and moved over to AIAYN models and as a result were
able to train high quality models within a matter of 3-4 days.

As we have mentioned our models are slightly overfit-
ted on the training data and we also do not average various
model checkpoints. We believe that the BLEU scores above
can be further increased by a few points but since we were
not aware of advanced techniques like model averaging and
lacked the time and resources for trying out various model
settings we were unable to train the best possible models.
Note that we also do not do ensembling which is something
that the authors of tensor2tensor do not implement and is par-
ticularly unnecessary since model averaging seems to miti-
gate the need for ensembling many models. We believe that
in the future these AIAYN models can be exploited to their
fullest extent and will replace the traditional RNN models.

6. Conclusions
We have described how we trained our zero and non zero
shot multilingual NMT model for the IWSLT Multilingual
MT tasks. We used the simple token based (appending
”< 2xx >” to the source language sentence where xx is
the target language) approach and observed that it is much
superior to a PBSMT system. We observed that for the given
corpora and settings the zero shot results are as good as the
non zero shot results because of the existence of N-lingual
sentences which constitute 60% of the bilingual corpora. We
also verified that AIAYN models are extremely fast to train
and yield models of high quality in a matter of days instead of
weeks or months which the recurrent NMT models require.
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Abstract
This paper describes our German and English Speech-

to-Text (STT) systems for the 2017 IWSLT evaluation cam-
paign. The campaign focuses on the transcription of un-
segmented lecture talks. Our setup includes systems using
both the Janus and Kaldi frameworks. We combined the out-
puts using both ROVER [1] and confusion network combina-
tion (CNC) [2] to achieve a good overall performance. The
individual subsystems are built by using different speaker-
adaptive feature combination (e.g., lMEL with i-vector or
bottleneck speaker vector), acoustic models (GMM or DNN)
and speaker adaptation (MLLR or fMLLR). Decoding is per-
formed in two stages, where the GMM and DNN systems are
adapted on the combination of the first stage outputs using
MLLR, and fMLLR.

The combination setup produces a final hypothesis that
has a significantly lower WER than any of the individual sub-
systems. For the English lecture task, our best combination
system has a WER of 8.3% on the tst2015 development set
while our other combinations gained 25.7% WER for Ger-
man lecture tasks.

1. Introduction
For many years now, the International Workshop on Spo-
ken Language Translation (IWSLT) offers a comprehensive
evaluation campaign on spoken language translation. The
evaluation is organized in different evaluation tracks cover-
ing automatic speech recognition (ASR), machine translation
(MT), and the full-fledged combination of the two of them
into speech translation systems (SLT). Different from previ-
ous years, this year’s installment mostly consists of real-life
lectures e.g., real university lectures or talks at real symposia.

The goal of the ASR track is the automatic transcription
of fully unsegmented lectures. The quality of the resulting
transcriptions is measured in word error rate (WER).

This system paper describes our English and German
ASR setups with which we participated in the lecture ASR
tracks of the 2017 IWSLT evaluation campaign. Similar to
previous years’ evaluation [3], we used the Janus Recogni-
tion Toolkit (JRTk) [4] which features the IBIS single-pass
decoder [5] to build several complementary subsystems and
combined them with an additional system developed with the

Kaldi toolkit [6]. Our Janus-based systems employ different
speaker-adaptive features, acoustic models or speaker adap-
tation techniques. While the Kaldi-based system applies the
same adaptation techniques but employs sequence training
and big n-gram language models for rescoring.

The rest of this paper is structured as follows. Section 2
describes the data that our system was trained and tested on.
This is followed by Section 3 which provides a description
of the acoustic front-ends used in our system and Section 7
which describes our segmentation setup. An overview of the
techniques used to build our acoustic models is given in Sec-
tion 5. We describe the language model used for this evalua-
tion in Section 6. Our decoding strategy and results are then
presented in Sections 8 and 9. We conclude the paper with
Section 10.

2. Data Resources
2.1. Training Data

Table 1 and Table 2 show the data sources we used for the
acoustic model training of our systems. This year we in-
cluded 80 hours of broadcast news which results in a total of
483 hours for the English systems. For the German systems,
we used the same training data as last year.

Source # Amount

Quaero from 2010 to 2012 200 hours
Broadcast news [7] 80 hours
TED-LIUM v2 [8]
excluding disallowed talks 203 hours

Total 483 hours

Table 1: English acoustic modeling data.

2.2. Test Data

For this year’s evaluation campaign, the evaluation test set
“tst2017” as well as the development test sets “tst2015”,
“tst2013” and “dev2017” were provided for the English and
German lecture tasks. All development test sets featured a
pre-segmentation provided by the IWSLT organizers. For the
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Source # Amount

Quaero from 2009 to 2012 180 hours
Broadcast news 24 hours
Baden-Württemberg parliament 160 hours

Total 364 hours

Table 2: German acoustic modeling data.

evaluation test set, automatic segmentation was required.

3. Feature Extraction

Our systems are built using several different front-ends as
previously described in [3] including 40-dimensional log
scale mel filterbank (lMEL), 20-dimensional mel frequency
ceptral coefficient (MFCC), 20-dimensional minimum vari-
ance distortionless response (MVDR) and 14-dimensional
tonal (T) features. These features can be augmented with
i-vectors (Section 3.2) or bottleneck speaker vectors (Sec-
tion 3.3) to be directly used for acoustic modeling or fed into
deep bottleneck networks (Section 3.1) for extracting bot-
tleneck features. The extracted bottleneck features are then
transformed using feature-space maximum likelihood linear
regression (fMLLR) and augmented with i-vectors to build
speaker-adaptive features (Section 3.4). Our detailed feature
extraction pipeline is explained in [9].

3.1. Bottleneck Features

We employed the deep bottleneck architecture described by
[10], which consists of a stacked denoising auto-encoder of
4-5 layers each containing 1600-2000 units, followed by a
42 unit bottleneck, a hidden layer and the classification layer.
The stacked auto-encoder is first pre-trained layer-wise [11],
then the whole network is fine-tuned to discriminate target
phoneme states. For the extraction of bottleneck features
(BN), the layers after the bottleneck were removed and the
output activations of the bottleneck layer were used as BN.

3.2. I-vectors

To extract i-vectors, a full universal background model
(UBM) with 2048 mixtures was trained on the training
dataset using 20 Mel-frequency cepstral coefficients with
delta and delta-delta features appended. The total variabil-
ity matrices were estimated for extracting 100 dimensional
i-vectors. We tuned the size of the i-vectors in a series of pre-
liminary experiments for optimal recognition performance.
The UBM model training and i-vector extraction was per-
formed by using the sre08 module from the Kaldi toolkit [6].
I-vectors as well as tonal features were always used in com-
bination with other features.

3.3. Bottleneck Speaker Vectors

In addition to i-vectors, we also used Bottleneck Speaker
Vectors (BSVs) [12]. While they serve the same purpose,
they are entirely neural network based. We used the same
setup as for our hybrid systems, but trained the network to
recognize different speakers instead of phonemes using a
one-hot encoding of the speaker identities. To extract the
BSVs, we used a bottleneck layer as second last layer of the
speaker classification network and discarded all layers after
this layer after training. For obtaining the final speaker vec-
tor, we averaged the output activation of this hidden layer on
a per speaker basis.

3.4. Speaker Adaptive Features

To build speaker-adaptive features (SAF) for GMM sys-
tems, we first train deep bottleneck network from 11 stacked
frames of regular features and i-vectors. The extracted BN
features are then spliced for 11 consecutive frames and trans-
formed using Linear Discriminate Analysis (LDA) which are
known to make inputs more accurately modeled by GMMs.

The speaker-adaptive features for DNN systems are ob-
tained after transforming BN features using fMLLR trans-
formation and then augmented with i-vectors. The process
of fMLLR estimation was performed as traditional approach.
During the training, we used the adaptation data of the same
speaker and the reference transcriptions to do the alignment,
while the same GMMs were used as first-pass systems to
generate transcriptions in the testing.

4. Phoneme and Dictionary

For English, we used the CMU dictionary1. This is the same
phoneme set as the one used in last year’s systems. It consists
of 45 phonemes and allophones. We used 7 noise tags and
one silence tag. Missing pronunciations were created using
the FESTIVAL [13] Text-to-Speech Engine.

Our German system uses an initial dictionary based on
the Verbmobil Phoneset [14]. Missing pronunciations are
generated using both MaryTTS [15] and FESTIVAL [13].

5. Acoustic Modeling

5.1. HMM CD-Phone

All GMM and hybrid models classify context-dependent
quinphones with three states per phoneme and a left-to-right
HMM topology without skip states. The English acoustic
models use 8,156 distributions and codebooks derived from
decision-tree based clustering of the states of all possible
quinphones. The German acoustic models use either 10k or
18k context-dependent states.

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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5.2. GMM Models

The GMM models are trained by using incremental splitting
of Gaussians training (MAS) [16], followed by optimal fea-
ture space training (OFS) which is a variant of semi-tied co-
variance (STC) [17] training using a single global transfor-
mation matrix. The model is then refined by one iteration of
Viterbi training.

For the evaluation, we trained one GMM system using
SAF features with MFCC front-ends for the English lecture
task.

5.3. Hybrid Models

All the DNN models also share the same architecture which
has 5-6 hidden layers with 2000 units per layer. The input
of the DNNs are 11 stacked frames of 42-dimensional trans-
formed bottleneck features or 40-dimensional lMEL, with or
without combining i-vectors and tonal features. We used the
sigmoid activation function for the hidden layers and soft-
max for the output layer. DNN systems were trained using
the cross-entropy loss function to predict context-dependent
states. The same training method is applied for all DNNs
which includes pre-training with denoising auto-encoders
and followed by fine-tuning with back-propagation. We used
an exponential schedule to update the learning rate during the
neural network training.

This year, we built two DNNs using SA features with
different front-ends for the English TED task.

The German setup for the lectures task consists of 4 DNN
systems based on different combinations of input features as
shown in Table 6. SAF features were used as well.

6. Language Models

6.1. Vocabulary and Kneser-Ney Models

For language model training and vocabulary selection, we
used the subtitles of TED talks, or translations thereof, and
text data from various sources (see Tables 3 and 4). Text
cleaning included tokenization, lowercasing, number nor-
malization, and removal of punctuation. Language model
training was performed by building separate language mod-
els for all (sub-)corpora using the SRILM toolkit [18] with
modified Kneser-Ney smoothing. These were then linearly
interpolated, with interpolation weights tuned using held-out
data from the TED corpus. For German, we split compounds
similarly as in [19].

For the vocabulary selection, we followed an approach
proposed by Venkataraman et al. [20]. We built unigram
language models using Witten-Bell smoothing from all text
sources, and determined unigram probabilities that maxi-
mized the likelihood of a held-out TED data set. As our
vocabulary, we then used the top 150k words for English,
and 300k words for German.

Text corpus # Words

TED 3.6m
Fisher 10.4m
Switchboard 1.4m
TEDLIUM dataselection 155m
News + News-commentary + -crawl 4,478m
Commoncrawl 185m
GIGA 2323m

Table 3: English language modeling data.

Text corpus # Words

TED 2,685k
News+Newscrawl 1,500M
Euro Language Newspaper 95,783k
Common Crawl 51,156k
Europarl 49,008k
ECI 14,582k
MultiUN 6,964k
German Political Speeches 5,695k
Callhome 159k
HUB5 20k

Table 4: German language modeling data after cleaning and
compound splitting.

6.2. Feed-forward Neural Language Model

During decoding the probabilities of a feedforward neural
network language model were linearly interpolated with the
baseline language model. Due to performance considera-
tions, the most recent 40k queries for this language model
were cached and we constrained the output vocabulary to the
20k most frequent words which appeared in the text corpora.
We used 200 dimensional word embeddings trained with the
Skip-gram model [21]. Three words were considered as the
context, while the rest of the network consisted of three hid-
den layers followed by a softmax output layer. The training
text consisted of 30M words and was selected based on the
text sources listed in Table 4.

7. Automatic Segmentation
In this evaluation, the test set for the ASR track was pro-
vided without manual sentence segmentation, thus automatic
segmentation of the target data was mandatory. We utilized
an approach to automatic segmentation of audio data that
is SVM based. This kind of segmentation is using speech
and non-speech models, using the framework introduced in
[22]. The pre-processing makes use of an LDA transforma-
tion on DBNF feature vectors after frame stacking to effec-
tively incorporate temporal information. The SVM classifier
is trained with the help of LIBSVM [23]. A 2-phased post-
processing is applied for final segment generation.
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We generated the segmentations for both English and
German using this SVM based segmentation. The parame-
ters for the SVM segmenter were chosen on a per language
basis after preliminary experiments.

8. Systems and Combination
Table 5 shows our systems built for the English submission.
In the first-pass, we used a GMM and two DNN systems
with the acoustic models and 4-gram language model de-
scribed in Section 5 and Section 6. Their decoded lattices
are sent to a consensus decoding system (CNC) to produce
combined hypotheses and confidence scores for the adapta-
tion in the second-pass. The GMM system is fully adapted
as transitional approach using both feature space adaptation
(fMLLR) and model adaptation (MLLR). The DNN systems
are adapted by training the DNN acoustic models one more
epoch on the adaptation data of each speaker. The adapta-
tion data is obtained by performing alignment of the CNC
decoded results with the speaker audio and filtering out the
frames with the confidence scores higher than 0.7. All these
systems were built using Janus Recognition Toolkit (JRTK)
[14].

Beside that we also used the Kaldi toolkit [6] to build a
new system with similar feature adaptation techniques. The
same train database is used for acoustic modeling and we use
the trained 4-gram language model for rescoring.

Our final submission for the English lecture task consists
of a ROVER of the Kaldi based system and the adapted sys-
tems. The results of the single and adapted systems as well
the combined system are presented in Table 5.

9. Results
For the English task, we gained significant improvements
over building speaker adaptive features, DNN model adap-
tation and CNC combination. On the test set “tst2015”, we
archived 8.3% WERs.

System tst2015

GMM(SAF-MFCC) 11.6
DNN(SAF-lMEL) 10.2
DNN(SAF-MFCC) 11.2

CNC 9.4

GMM(SAF-MFCC) adapted 9.3
DNN(SAF-lMEL) adapted 8.8
DNN(SAF-MFCC) adapted 9.3

Kaldi 4-gram LM rescored 9.3

ROVER 8.3

Table 5: Results for English talk task on ‘tst2015’ develop-
ment set.

In addition to our experiments on these two English

tracks, we also participated in the German lecture task. The
results on the “dev2017” test set are shown in Table 6.

System dev2017

18k DNN(BSV BN-lMEL+T) NNLM 26.7
18k DNN(Mod-M2+lMEL+T) 27.1
10k DNN(SAF-BN-M2+T) NNLM 25.2
10k DNN(SAF-BN-lMEL+T) NNLM 25.7

CNC 25.7

Table 6: Results for German lecture task on ‘dev2017’ devel-
opment set.

10. Conclusion
In this paper we presented our English and German LVCSR
systems, with which we participated in the 2017 IWSLT eval-
uation. All systems make use of neural network based front-
ends, HMM/GMM and HMM/DNN based acoustics models.
The decoding set-up of all languages makes extensive use of
system combination of single systems obtained by combin-
ing different feature extraction front-ends and acoustic mod-
els.
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Abstract
In this paper, we explore alternative ways to train a neu-

ral machine translation system in a multi-domain scenario.
We investigate data concatenation (with fine tuning), model
stacking (multi-level fine tuning), data selection and multi-
model ensemble. Our findings show that the best translation
quality can be achieved by building an initial system on a
concatenation of available out-of-domain data and then fine-
tuning it on in-domain data. Model stacking works best when
training begins with the furthest out-of-domain data and the
model is incrementally fine-tuned with the next furthest do-
main and so on. Data selection did not give the best results,
but can be considered as a decent compromise between train-
ing time and translation quality. A weighted ensemble of
different individual models performed better than data selec-
tion. It is beneficial in a scenario when there is no time for
fine-tuning an already trained model.

1. Introduction
Neural machine translation (NMT) systems are sensitive to
the data they are trained on. The available parallel corpora
come from various genres and have different stylistic vari-
ations and semantic ambiguities. While such data is often
beneficial for a general purpose machine translation system,
a problem arises when building systems for specific domains
such as lectures [1, 2], patents [3] or medical text [4], where
either the in-domain bilingual text does not exist or is avail-
able in small quantities.

Domain adaptation aims to preserve the identity of the
in-domain data while exploiting the out-of-domain data in
favor of the in-domain data and avoiding possible drift to-
wards out-of-domain jargon and style. The most commonly
used approach to train a domain-specific neural MT system
is to fine-tune an existing model (trained on generic data)
with the new domain [5, 6, 7, 8] or to add domain-aware
tags in building a concatenated system [9]. [10] proposed
a gradual fine-tuning method that starts training with com-
plete in- and out-of-domain data and gradually reduces the
out-of-domain data for next epochs. Other approaches that
have been recently proposed for domain adaptation of neural
machine translation are instance weighting [11, 12] and data
selection [13].

In this paper we explore NMT in a multi-domain sce-

nario. Considering a small in-domain corpus and a number
of out-of-domain corpora, we target questions like:

• What are the different ways to combine multiple do-
mains during a training process?

• What is the best strategy to build an optimal in-domain
system?

• Which training strategy results in a robust system?

• Which strategy should be used to build a decent in-
domain system given limited time?

To answer these, we try the following approaches: i) data
concatenation: train a system by concatenating all the avail-
able in-domain and out-of-domain data; ii) model stacking:
build NMT in an online fashion starting from the most distant
domain, fine-tune on the closer domain and finish by fine-
tuning the model on the in-domain data; iii) data selection:
select a certain percentage of the available out-of-domain
corpora that is closest to the in-domain data and use it for
training the system; iv) multi-model ensemble: separately
train models for each available domain and combine them
during decoding using balanced or weighted averaging. We
experiment with Arabic-English and German-English lan-
guage pairs. Our results demonstrate the following findings:

• A concatenated system fine-tuned on the in-domain
data achieves the most optimal in-domain system.

• Model stacking works best when starting from the fur-
thest domain, fine-tuning on closer domains and then
finally fine-tuning on the in-domain data.

• A concatenated system on all available data results in
the most robust system.

• Data selection gives a decent trade-off between trans-
lation quality and training time.

• Weighted ensemble is helpful when several individual
models have been already trained and there is no time
for retraining/fine-tuning.

The paper is organized as follows: Section 2 describes
the adaptation approaches explored in this work. We present
experimental design in Section 3. Section 4 summarizes the
results and Section 5 concludes.
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Figure 1: Multi-domain training approaches

2. Approaches
Consider an in-domain data Di and a set of out-of-domain
data Do = Do1 , Do2 , ..Don . We explore several methods to
benefit from the available data with an aim to optimize trans-
lation quality on the in-domain data. Specifically, we try data
concatenation, model stacking, data selection and ensemble.
Figure 1 presents them graphically. In the following, we de-
scribe each approach briefly.

2.1. Concatenation

A naı̈ve yet commonly used method when training both sta-
tistical [14]1 and neural machine translation systems [15] is
to simply concatenate all the bilingual parallel data before
training the system. During training an in-domain validation
set is used to guide the training loss. The resulting system
has an advantage of seeing a mix of all available data at ev-
ery time interval, and is thus robust to handle heterogeneous
test data.

2.2. Fine Tuning and Model Stacking

Neural machine translation follows an online training strat-
egy. It sees only a small portion of the data in every training
step and estimates the value of network parameters based on
that portion. Previous work has exploited this strategy in the
context of domain adaptation. [5] trained an initial model
on an out-of-domain data and later extended the training on
in-domain data. In this way the final model parameters are

1State-of-the-art baselines are trained on plain concatenation of the data
with MT feature functions (such as Language Model) skewed towards in-
domain data, through interpolation.

tuned towards the in-domain data. The approach is referred
as fine-tuning later on.

Since in this work we deal with several domains, we pro-
pose a stacking method that uses multi-level fine-tuning to
train a system. Figure 1 (second row) shows the complete
procedure: first, the model is trained on the out-of-domain
data Do1 for N epochs; training is resumed from N + 1-th
epoch to the M -th epoch but using the next available out-of-
domain data Do2 ; repeat the process till all of the available
out-of-domain corpora have been used; in the last step, re-
sume training on the in-domain data Di for a few epochs.
The resulting model has seen all of the available data as in
the case of the data concatenation approach. However, here
the system learns from the data domain by domain. We call
this technique model stacking.

The model stacking and fine-tuning approaches have the
advantage of seeing the in-domain data in the end of training,
thus making the system parameters more optimized for the
in-domain data. They also provide flexibility in extending an
existing model to any new domain without having to retrain
the complete system again on the available corpora.

2.3. Data Selection

Building a model, whether concatenated or stacked, on all
the available data is computationally expensive. An alterna-
tive approach is data selection, where we select a part of the
out-of-domain data which is close to the in-domain data for
training. The intuition here is two fold: i) the out-of-domain
data is huge and takes a lot of time to train on, and ii) not
all parts of the out-of-domain data are beneficial for the in-
domain data. Training only on a selected part of the out-of-
domain data reduces the training time significantly while at
the same time creating a model closer to the in-domain.

In this work, we use the modified Moore-Lewis [16] for
data selection. It trains in- and out-of-domain n-gram models
and then ranks sequences in the out-of-domain data based on
cross-entropy difference. The out-of-domain sentences be-
low a certain threshold are selected for training. Since we are
dealing with several out-of-domain corpora, we apply data
selection separately on each of them and build a concatenated
system using in-domain plus selected out-of-domain data as
shown in Figure 1. Data selection significantly reduces data
size thus improving training time for NMT. However, finding
the optimal threshold to filter data is a cumbersome process.
Data selection using joint neural networks has been explored
in [17]. We explore data selection as an alternative to the
above mentioned techniques.

2.4. Multi-domain Ensemble

Out-of-domain data is generally available in larger quantity.
Training a concatenated system whenever a new in-domain
becomes available is expensive in terms of both time and
computation. An alternative to fine-tuning the system with
new in-domain is to do ensemble of the new model with the
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existing model. The ensemble approach brings the flexibility
to use them during decoding without a need of retraining and
fine-tuning.

Consider N models that we would like to use to generate
translations. For each decoding step, we use the scores over
the vocabulary from each of these N models and combine
them by averaging. We then use these averaged scores to
choose the output word(s) for each hypothesis in our beam.
The intuition is to combine the knowledge of the N models to
generate a translation. We refer to this approach as balanced
ensemble later on. Since here we deal with several different
domains, averaging scores of all the models equally may not
result in optimum performance. We explore a variation of
balanced ensemble called weighted ensemble that performs a
weighted average of these scores, where the weights can be
pre-defined or learned on a development set.

Balanced ensemble using several models of a single
training run saved at different iterations has shown to im-
prove performance by 1-2 BLEU points [15]. Here our goal
is not to improve the best system but to benefit from indi-
vidual models built using several domains during a single
decoding process. We experiment with both balanced and
weighted ensemble under the multi-domain condition only.2

3. Experimental Design
3.1. Data

We experiment with Arabic-English and German-English
language pairs using the WIT3 TED corpus [20] made avail-
able for IWSLT 2016 as our in-domain data. For Arabic-
English, we take the UN corpus [21] and the OPUS cor-
pus [22] as out-of-domain corpora. For German-English, we
use the Europarl (EP), and the Common Crawl (CC) corpora
made available for the 1st Conference on Statistical Machine
Translation3 as out-of-domain corpus. We tokenize Arabic,
German and English using the default Moses tokenizer. We
did not do morphological segmentation of Arabic. Instead
we apply sub-word based segmentation [23] that implicitly
segment as part of the compression process.4 Table 1 shows
the data statistics after running the Moses tokenizer.

We use a concatenation of dev2010 and tst2010 sets for
validation during training. Test sets tst2011 and tst2012
served as development sets to find the best model for fine-
tuning and tst2013 and tst2014 are used for evaluation. We
use BLEU [26] to measure performance.

3.2. System Settings

We use the Nematus tool [27] to train a 2-layered LSTM
encoder-decoder with attention [28]. We use the default set-

2Weighted fusion of Neural Networks trained on different domains has
been explored in [18] for phrase-based SMT. Weighted training for Neural
Network Models has been proposed in [19].

3http://www.statmt.org/wmt16/translation-task.html
4[24] showed that using BPE performs comparable to morphological to-

kenization [25] in Arabic-English machine translation.

Arabic-English
Corpus Sentences Tokar Token

TED 229k 3.7M 4.7M
UN 18.3M 433M 494M
OPUS 22.4M 139M 195M

German-English
Corpus Sentences Tokde Token

TED 209K 4M 4.2M
EP 1.9M 51M 53M
CC 2.3M 55M 59M

Table 1: Statistics of the Arabic-English and German-
English training corpora in terms of Sentences and Tokens.
EP = Europarl, CC = Common Crawl, UN = United Nations.

tings: embedding layer size: 512, hidden layer size: 1000.
We limit the vocabulary to 50k words using BPE [23] with
50,000 operations.

4. Results
In this section, we empirically compare several approaches to
combine in- and out-of-domain data to train an NMT system.
Figure 2 and Figure 3 show the learning curve on develop-
ment sets using various approaches mentioned in this work.
We will go through them individually later in this section.

4.1. Individual Systems

We trained systems on each domain individually (for 10
epochs)5 and chose the best model using the development
set. We tested every model on the in-domain testsets. Table
2 shows the results. On Arabic-English, the system trained
on the out-of-domain data OPUS performed the best. This is
due to the large size of the corpus and its spoken nature which
makes it close to TED in style and genre. However, despite
the large size of UN, the system trained using UN performed
poorly. The reason is the difference in genre of UN from
the TED corpus where the former consists of United Nations
proceedings and the latter is based on talks.

For German-English, the systems built using out-of-
domain corpora performed better than the in-domain corpus.
The CC corpus appeared to be very close to the TED do-
main. The system trained on it performed even better than
the in-domain system by an average of 2 BLEU points.

4.2. Concatenation and Fine-tuning

Next we evaluated how the models performed when trained
on concatenated data. We mainly tried two variations: i)
concatenating all the available data (ALL) ii) combine only
the available out-of-domain data (OD) and later fine-tune the

5For German-English, we ran the models until they converged because
the training data is much smaller compared to Arabic-English direction

_____________________________________________________________
Proceedings of the 14th International Workshop on Spoken Language Translation

Tokyo, Japan, December 14th-15th, 2017

68



Figure 2: Arabic-English system development life line evaluated on development set tst-11 and tst-12. Here, ALL refers to
UN+OPUS+TED, and OD refers to UN+OPUS

Arabic-English
TED UN OPUS

tst13 23.6 22.4 32.2
tst14 20.5 17.8 27.3
avg. 22.1 20.1 29.7

German-English
TED CC EP

tst13 29.5 29.8 29.1
tst14 23.3 25.7 25.1
avg. 26.4 27.7 27.1

Table 2: Individual domain models evaluated on TED testsets

model on the in-domain data. Table 3 shows the results. The
fine-tuned system outperformed a full concatenated system
by 1.8 and 2.1 average BLEU points in Arabic-English and
German-English systems respectively.

Looking at the development life line of these systems
(Figures 2, 3), since ALL has seen all of the data, it is bet-
ter than OD till the point OD is fine-tuned on the in-domain
corpus. Interestingly, at that point ALL and OD→TED have
seen the same amount of data but the parameters of the latter
model are fine-tuned towards the in-domain data. This gives
it average improvements of up to 2 BLEU points over ALL.

The ALL system does not give any explicit weight to any
domain 6 during training. In order to revive the in-domain
data, we fine-tuned it on the in-domain data. We achieved
comparable results to that of the OD→TED model which
means that one can adapt an already trained model on all

6other than the data size itself

Arabic-English
TED ALL OD→TED ALL→TED

tst13 23.6 36.1 37.9 38.0
tst14 20.5 30.2 32.1 32.2
avg. 22.1 33.2 35.0 35.1

German-English
TED ALL OD→TED ALL→TED

tst13 29.5 35.7 38.1 38.1
tst14 23.3 30.8 32.8 32.9
avg. 28.0 33.3 35.4 35.5

Table 3: Comparing results of systems built on a concatena-
tion of the data. OD represents a concatenation of the out-of-
domain corpora and ALL represents a concatenation of OD
and the in-domain data. → sign means fine-tuning

the available data to a specific domain by fine tuning it on
the domain of interest. This can be helpful in cases where
in-domain data is not known beforehand.

4.3. Model Stacking

Previously we concatenated all out-of-domain data and fine-
tuned it with the in-domain TED corpus. In this approach, we
picked one out-of-domain corpus at a time, trained a model
and fine-tuned it with the other available domain. We re-
peated this process till all out-of-domain data had been used.
In the last step, we fine-tuned the model on the in-domain
data. Since we have a number of out-of-domain corpora
available, we experimented with using them in different per-
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Figure 3: German-English system development life line evaluated on development set tst-11 and tst-12. Here, ALL refers to
EP+CC+TED, and OD refers to EP+CC

mutations for training and analyzed their effect on the devel-
opment sets. Figure 2 and Figure 3 show the results. It is
interesting to see that the order of stacking has a significant
effect on achieving a high quality system. The best com-
bination for the Arabic-English language pair started with
the UN data, fine-tuned on OPUS and then fine-tuned on
TED. When we started with OPUS and fine-tuned the model
on UN, the results dropped drastically as shown in Figure
2 (see OPUS→UN). The model started forgetting the pre-
viously used data and focused on the newly provided data
which is very distant from the in-domain data. We saw simi-
lar trends in the case of German-English language pair where
CC→EP dropped the performance drastically. We did not
fine-tune CC→EP and OPUS→UN on TED since there was
no better model to fine-tune than to completely ignore the
second corpus i.e. UN and EP for Arabic and German re-
spectively and fine-tune OPUS and CC on TED. The results
of OPUS→TED and CC→TED are shown in Figures.

Comparing the OPUS→TED system with the
UN→OPUS→TED system, the result of OPUS→TED are
lowered by 0.62 BLEU points from the UN→OPUS→TED
system. Similarly, we saw a drop of 0.4 BLEU points for
German-English language pair when we did not use EP and
directly fine-tuned CC on TED. There are two ways to look
at these results, considering quality vs. time: i) by using UN
and EP in model stacking, the model learned to remember
only those parts of the data that are beneficial for achieving
better translation quality on the in-domain development sets.
Thus using them as part of the training pipeline is helpful
for building a better system. ii) training on UN and EP is
expensive. Dropping them from the pipeline significantly
reduced the training time and resulted in a loss of 0.62 and

0.4 BLEU points only.
To summarize, model stacking performs best when it

starts from the domain furthest from the in-domain data. In
the following, we compare it with the data concatenation ap-
proach.

4.4. Stacking versus Concatenation

We compared model stacking with different forms of con-
catenation. In terms of data usage, all models are exposed
to identical data. Table 4 shows the results. The best sys-
tems are achieved using a concatenation of all of the out-of-
domain data for initial model training and then fine-tuning
the trained model on the in-domain data. The concatenated
system ALL performed the lowest among all.

ALL learned a generic model from all the available
data without giving explicit weight to any particular domain
whereas model stacking resulted in a specialized system for
the in-domain data. In order to confirm the generalization
ability of ALL vs. model stacking, we tested them on a new
domain, News. ALL performed 4 BLEU points better than
model stacking in translating the news NIST MT04 testset.
This concludes that a concatenation system is not an opti-
mum solution for one particular domain but is robust enough
to perform well in new testing conditions.

4.5. Data Selection

Since training on large out-of-domain data is time inefficient,
we selected a small portion of out-of-domain data that is
closer to the in-domain data. For Arabic-English, we selected
3% and 5% from the UN and OPUS data respectively which
constitutes roughly 2M sentences. For German-English, we
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Arabic-English
ALL OD→TED UN→OPUS→TED

tst13 36.1 37.9 36.8
tst14 30.2 32.1 31.2
avg. 33.2 35.0 34.0

German-English
ALL OD→TED EP→CC→TED

tst13 35.7 38.1 36.8
tst14 30.8 32.8 31.7
avg. 33.3 35.4 34.3

Table 4: Stacking versus concatenation

Arabic-English German-English
ALL Selected ALL Selected

tst13 36.1 32.7 35.7 34.1
tst14 30.2 27.8 30.8 29.9
avg. 33.2 30.3 33.3 32.0

Table 5: Results of systems trained on a concatenation of
selected data and on a concatenation of all available data

selected 20% from a concatenation of EP and CC, which
roughly constitutes 1M training sentences.7

We concatenated the selected data and the in-domain data
to train an NMT system. Table 5 presents the results. The
selected system is worse than the ALL system. This is in
contrary to the results mentioned in the literature on phrase-
based machine translation where data selection on UN im-
proves translation quality [29]. This shows that NMT is not
as sensitive as phrase-based to the presence of the out-of-
domain data.

Data selection comes with a cost of reduced translation
quality. However, the selected system is better than all in-
dividual systems shown in Table 2. Each of these out-of-
domain systems take more time to train than a selected sys-
tem. For example, compared to individual UN system, the
selected system took approximately 1/10th of the time to
train. One can look at data selected system as a decent trade-
off between training time and translation quality.

4.6. Multi-domain Ensemble

We took the best model for every domain according to the
average BLEU on the development sets and ensembled them
during decoding. For weighted ensemble, we did a grid
search and selected the weights using the development set.
Table 6 presents the results of an ensemble on the Arabic-
English language pair and compares them with the individual
best model, OPUS, and a model built on ALL. As expected,

7These data-selection percentages have been previously found to be op-
timal when training phrase-based systems using the same data. For example
see [29].

Arabic-English
OPUS ALL ENSb ENSw

tst13 32.2 36.1 31.9 34.3
tst14 27.3 30.2 25.8 28.6
avg. 29.7 33.2 28.9 31.5

Table 6: Comparing results of balanced ensemble (ENSb)
and weighted ensemble (ENSw) with the best individual
model and the concatenated model

balanced ensemble (ENSb) dropped results compared to the
best individual model. Since the domains are very distant,
giving equal weights to them hurts the overall performance.
The weighted ensemble (ENSw) improved from the best in-
dividual model by 1.8 BLEU points but is still lower than the
concatenated system by 1.7 BLEU points. The weighted en-
semble approach is beneficial when individual domain spe-
cific models are already available for testing. Decoding with
multiple models is more efficient compared to training a sys-
tem from scratch on a concatenation of the entire data.

4.7. Discussion

The concatenation system showed robust behavior in trans-
lating new domains. [9] proposed a domain aware concate-
nated system by introducing domain tags for every domain.
We trained a system using their approach and compared the
results with simple concatenated system. The domain aware
system performed slightly better than the concatenated sys-
tem (up to 0.3 BLEU points) when tested on the in-domain
TED development sets. However, domain tags bring a limi-
tation to the model since it can only be tested on the domains
it is trained on. Testing on an unknown domain would first
require to find its closest domain from the set of domains
the model is trained on. The system can then use that tag to
translate unknown domain sentences.

5. Conclusion

We explored several approaches to train a neural machine
translation system under multi-domain conditions and evalu-
ated them based on three metrics: translation quality, training
time and robustness. Our results showed that an optimum in-
domain system can be built using a concatenation of the out-
of-domain data and then fine-tuning it on the in-domain data.
A system built on the concatenated data resulted in a generic
system that is robust to new domains. Model stacking is sen-
sitive to the order of domains it is trained on. Data selection
and weighted ensemble resulted in a less optimal solution.
The former is efficient to train in a short time and the latter
is useful when different individual models are available for
testing. It provides a mix of all domains without retraining
or fine-tuning the system.
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M. Federico, “Report on the 11th IWSLT Evaluation
Campaign,” Proceedings of the International Work-
shop on Spoken Language Translation, Lake Tahoe, US,
2014.

[3] A. Fujii, M. Utiyama, M. Yamamoto, and T. Utsuro,
“Overview of the patent translation task at the ntcir-
8 workshop,” in In Proceedings of the 8th NTCIR
Workshop Meeting on Evaluation of Information Ac-
cess Technologies: Information Retrieval, Question An-
swering and Cross-lingual Information Access, 2010,
pp. 293–302.

[4] O. Bojar, C. Buck, C. Federmann, B. Haddow,
P. Koehn, J. Leveling, C. Monz, P. Pecina, M. Post,
H. Saint-Amand, R. Soricut, L. Specia, and A. Tam-
chyna, “Findings of the 2014 workshop on statistical
machine translation,” in Proceedings of the Ninth Work-
shop on Statistical Machine Translation, Baltimore,
Maryland, USA, June 2014.

[5] M.-T. Luong and C. D. Manning, “Stanford Neural Ma-
chine Translation Systems for Spoken Language Do-
mains,” in Proceedings of the International Workshop
on Spoken Language Translation, Da Nang, Vietnam,
December 2015.

[6] M. Freitag and Y. Al-Onaizan, “Fast domain
adaptation for neural machine translation,” CoRR,
vol. abs/1612.06897, 2016. [Online]. Available:
http://arxiv.org/abs/1612.06897

[7] C. Servan, J. M. Crego, and J. Senellart, “Do-
main specialization: a post-training domain adap-
tation for neural machine translation,” CoRR,
vol. abs/1612.06141, 2016. [Online]. Available:
http://arxiv.org/abs/1612.06141

[8] C. Chu, R. Dabre, and S. Kurohashi, “An em-
pirical comparison of simple domain adaptation
methods for neural machine translation,” CoRR,
vol. abs/1701.03214, 2017. [Online]. Available:
http://arxiv.org/abs/1701.03214

[9] C. Kobus, J. M. Crego, and J. Senellart, “Do-
main control for neural machine translation,” CoRR,
vol. abs/1612.06140, 2016. [Online]. Available:
http://arxiv.org/abs/1612.06140

[10] M. van der Wees, A. Bisazza, and C. Monz, “Dynamic
data selection for neural machine translation,” in Pro-
ceedings of the the Conference on Empirical Methods
in Natural Language Processing, September 2017.

[11] R. Wang, M. Utiyama, L. Liu, K. Chen, and E. Sumita,
“Instance weighting for neural machine translation do-
main adaptation,” in Proceedings of the the Conference
on Empirical Methods in Natural Language Process-
ing,, September 2017.

[12] B. Chen, C. Cherry, G. Foster, and S. Larkin, “Cost
weighting for neural machine translation domain adap-
tation,” in Proceedings of the First Workshop on Neural
Machine Translation, September 2017.

[13] R. Wang, A. Finch, M. Utiyama, and E. Sumita, “Sen-
tence embedding for neural machine translation domain
adaptation,” in Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Short
Papers), August 2017.

[14] P. Williams, R. Sennrich, M. Nadejde, M. Huck,
B. Haddow, and O. Bojar, “Edinburgh’s statistical ma-
chine translation systems for wmt16,” in Proceedings of
the First Conference on Machine Translation. Berlin,
Germany: Association for Computational Linguis-
tics, August 2016, pp. 399–410. [Online]. Available:
http://www.aclweb.org/anthology/W16-2327

[15] R. Sennrich, B. Haddow, and A. Birch, “Ed-
inburgh neural machine translation systems for
wmt 16,” in Proceedings of the First Con-
ference on Machine Translation. Berlin, Ger-
many: Association for Computational Linguistics,
August 2016, pp. 371–376. [Online]. Available:
http://www.aclweb.org/anthology/W16-2323

[16] A. Axelrod, X. He, and J. Gao, “Domain adaptation via
pseudo in-domain data selection,” in Proceedings of the
Conference on Empirical Methods in Natural Language
Processing, ser. EMNLP ’11, Edinburgh, United King-
dom, 2011.

[17] N. Durrani, H. Sajjad, S. Joty, A. Abdelali, and S. Vo-
gel, “Using Joint Models for Domain Adaptation in Sta-
tistical Machine Translation,” in Proceedings of the Fif-
teenth Machine Translation Summit (MT Summit XV).
Florida, USA: AMTA, To Appear 2015.

[18] N. Durrani, H. Sajjad, S. Joty, and A. Abde-
lali, “A deep fusion model for domain adaptation
in phrase-based mt,” in Proceedings of COLING

_____________________________________________________________
Proceedings of the 14th International Workshop on Spoken Language Translation

Tokyo, Japan, December 14th-15th, 2017

72



2016, the 26th International Conference on Com-
putational Linguistics: Technical Papers. Osaka,
Japan: The COLING 2016 Organizing Committee,
December 2016, pp. 3177–3187. [Online]. Available:
http://aclweb.org/anthology/C16-1299

[19] S. Joty, H. Sajjad, N. Durrani, K. Al-Mannai, A. Abde-
lali, and S. Vogel, “How to Avoid Unwanted Pregnan-
cies: Domain Adaptation using Neural Network Mod-
els,” in Proceedings of the 2015 Conference on Empir-
ical Methods in Natural Language Processing, Lisbon,
Portugal, September 2015.

[20] M. Cettolo, “An Arabic-Hebrew parallel corpus of
TED talks,” in Proceedings of the AMTA Workshop on
Semitic Machine Translation (SeMaT), Austin, US-TX,
November 2016.

[21] M. Ziemski, M. Junczys-Dowmunt, and B. Pouliquen,
“The united nations parallel corpus v1.0,” in Proceed-
ings of the Tenth International Conference on Language
Resources and Evaluation LREC 2016, Portorož, Slove-
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Abstract
Punctuation and segmentation is crucial in spoken lan-

guage translation, as it has a strong impact to translation per-
formance. However, the impact of rare or unknown words in
the performance of punctuation and segmentation insertion
has not been thoroughly studied. In this work, we simulate
various degrees of domain-match in testing scenario and in-
vestigate their impact to the punctuation insertion task.

We explore three rare word generalizing schemes using
part-of-speech (POS) tokens. Experiments show that gener-
alizing rare and unknown words greatly improves the punc-
tuation insertion performance, reaching up to 8.8 points of
improvement in F-score when applied to the out-of-domain
test scenario. We show that this improvement in punctuation
quality has a positive impact on a following machine transla-
tion (MT) performance, improving it by 2 BLEU points.

1. Introduction
Punctuation and segmentation for automatic speech recogni-
tion (ASR) output is crucial in order to provide a better read-
ability of the transcript as well as for a better performance in
a subsequent application, such as machine translation (MT).
Current state-of-the-art ASR systems often do not generate
any or reliable punctuation marks. Thus, there has been an
extensive amount of study on this issue.

A widely used method for punctuation and segmentation
insertion utilizes language model with prosody features [1]
due to its low latency. On the other hand, translation model-
inspired systems [2, 3, 4] show an outstanding performance,
both in accuracy of punctuation marks and improving the fol-
lowing MT performance. Using such monolingual transla-
tion systems, a non-punctuated source language is translated
into a punctuated source language. Recently a neural ma-
chine translation (NMT)-based model [5] is shown to have
a better performance, maintaining low latency in a real-time
application.

While the monolingual translation system for punctua-
tion insertion has been thoroughly investigated for its per-
formance in subsequent applications, such as MT, and for

∗Now in Amazon: eunahch@amazon.com

real-time scenario constraints, such as latency and compact-
ness of the model, domain-dependency of the model and its
potential impact have been left under-explored.

In this paper, we investigate the domain-dependency of
punctuation and segmentation insertion task and suggest that
a generalization scheme over domain-specific words can
greatly improve the performance. In this scheme, rare and
unknown words are represented in their part-of-speech (POS)
tokens for generalization.

In order to analyze the problem, we consider three sce-
narios where a different amount of matching in-domain data
is available for training. In the first scenario, test data and
training data are from the same resource. Therefore they
share a same genre. In the second scenario, we consider a
case where only a small amount of in-domain data is avail-
able for training the punctuation insertion model. In the last
scenario, no matching in-domain data is available for train-
ing. Detailed data description for each scenario will be given
in Section 5.

We then design three different schemes for modeling
rare-words in punctuation insertion, whose details of the
schemes will be given in Section 4.

For the punctuation systems, we use an attentional
encoder-decoder model [6], so that a non-punctuated text
is punctuated and true-cased using a translation framework.
The punctuation insertion system is built for two source lan-
guages, English and German. We also translate punctuated
test data into another language and measured the translation
performance, in order to evaluate the impact of punctuation
insertion in a further down text processing.

Our experiments show that generalizing rare and un-
known words for punctuation and segmentation insertion
task brings up to 8.8 points of improvements in F-score. Ex-
periments on both manual and ASR transcripts show that
generalizing rare and unknown words using POS tokens im-
proves punctuation accuracy and also enhances the perfor-
mance of following MT.

This paper is organized as follows. In Section 2, we
overview past research in related fields. The problem state-
ment and motivation as well as a detailed description of the
task are given in Section 3. In Section 4 we will describe how
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rare words can be generalized for better performances and
the scenarios we consider in this work. Section 5 describes
three different domain-match scenarios in testing scenario.
Section 6 contains a detailed description of experimental se-
tups, data preparation and evaluation settings, followed by
Section 7 where the results and analyses are given. The pa-
per is concluded in Section 8.

2. Related Work
Many previous research has been devoted to insertion of
punctuation and segmentation into ASR transcripts. In [1],
authors investigated using language model for the task, in-
corporated with prosody information such as pause duration.
Authors in [7] explored maximum entropy model for the task
using lexical as well as prosodic features. Modeling punctu-
ation marks was also viewed as a sequential tagging problem
in [8].

Punctuation insertion task is considered as a part of trans-
lation task in [2], where the authors build an implicit trans-
lation model, which translates non-punctuated source lan-
guage into punctuated one. Later this work is extended by
the authors in [3]. In this work, authors compared three ap-
proaches to view the punctuation insertion task as a machine
translation problem. Among them, the explicit model where
punctuation marks are inserted on the source side, prior to
the translation, showed the best performance. This approach,
however, can only be used under the assumption that the sen-
tence boundary is already defined. Therefore, this approach
would punctuation marks within pre-defined sentence bound-
aries only.

In [4], authors solved this problem by preparing the train-
ing data differently. They altered the training data so that
sentence breaks are inserted in random locations. Therefore,
sentence breaks can be observed anywhere throughout the
data, not necessarily after a sentence-finalizing punctuation
marks. On the other hand, they used a sliding window for
testing.

Punctuation insertion task using neural networks has
been studied using various architectures. The authors in [9]
used a classifier based on a recurrent neural network (RNN).
It is shown that a bidirectional recurrent network with atten-
tion mechanism can be effective for the task as well [10].

Recent development of attention-based NMT [6] has im-
proved the performance machine translation greatly. An at-
tentional NMT system consists of an encoder representing
a source sentence and an attention-aware decoder that pro-
duces the translated sentence. In [5], a neural machine trans-
lation model is used as a method to insert punctuation marks
into a non-punctuated source language. Authors investigated
into the trade-off between network size and performance.
By applying compact representation on the target side, they
show that the NMT-based model outperforms PBMT-based
model, maintaining low latency in an end-to-end translation
scenario.

Domain adaptation and topic-matching problem for ma-

chine translation has been studied from various perspectives.
In [11], authors gave a thorough analysis on different ap-
proaches to adapt a statistical machine translation system to-
wards a target domain, using a small in-domain data. Tech-
niques for domain adaptation in NMT has been explored and
evaluated in an evaluation campaign in [12]. Rare word prob-
lem of NMT and potential solutions for machine translation
scenario have been discussed in various literatures [13, 14].
Also, in [15] authors investigated how to adapt existing NMT
systems to into a spoken language domain.

3. Domain-dependency of Punctuation and
Segmentation Insertion Task

Domain adaptation for machine translation has received a
great deal of attention [16], since applying an MT system into
a test data of a different domain significantly affects transla-
tion quality.

In this paper, we study the impact of domain mismatch
in the punctuation insertion task. Table 1 shows three sepa-
rate excerpts extracted from a test data, which is punctuated
using an NMT-based punctuation and segmentation system
[5]. The system is trained on generic data and the test data
contains domain-specific terminologies.

Table 1: Three excerpts from test data, punctuated using a
segmenter trained on generic data. Company and product
names are anonymized.

1 ...use your existing Git and Gerrit Implementations.
As well.

2 ...server level should ever reference.
The schema itself this.

3
...that might be an existing #Company #Product1.
#Product1-cont system an, #Product2 System it.
Could be a replicated...

We can observe that the system provides rather poor qual-
ity of punctuation especially around rare words. Especially
in the third excerpt, the product name (marked as #Product1),
which originally consists of two tokens, is even separated by
the inserted full stop.

Building separate domain-matching systems and obtain-
ing a substantial amount of training data for each domain is
costly. Therefore, we aim to build a punctuation insertion
system which can be used relatively independent from the
domain of test data. In order to generalize rare words, we
explore methods using POS tags. The details are described
in Section 4.

4. Modeling of Rare Words
In this work, punctuation and segmentation insertion task is
considered as translation problem. Lower-cased text without
any punctuation is translated into true-cased text with proper
punctuation and segmentation. While the NMT-based punc-
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tuation and segmentation insertion system shows a good re-
sult [5], the performance can be affected by rare words, as
discussed in Section 3.

4.1. Definition

In this work, we define rare word as a word occurring less
than 10 times throughout the training corpus. Additionally,
we also need to model unknown words during training, in
order to account them during the test case. Thus, we define
unknown word as a word occurred only once in the training
data.

4.2. Model

For generalization of rare words, we utilize POS information
in order to consider syntactic information of them. In this
work, we compare three different methods to represent rare
and unknown words in a generalized form using POS.

• unknown-NN: Only unknown words are generalized.
In order to generalize unknown words, we replace all
words that occurred only once in the training data, into
a POS-tag for noun (NN). We choose NN as it is the
most frequently occurring POS throughout the corpus.

• rare-NN: Rare words, including unknown words, are
generalized into the POS-tag for noun (NN).

• rare-MF: Unknown words are mapped into a POS-tag
for noun (NN), while rare words are mapped into each
word’s most frequently (MF) used POS tag. Thus,
we build a MF map from the training corpus. The
MF map stores the most frequently used POS for each
unique word in the training data. We obtain the POS-
tag for each word of the training corpus using Tree-
Tagger [17].

Test data is prepared in a similar manner for each crite-
ria. Unknown word, that was not observed during training, is
replaced into NN.

An excerpt from the training data is shown in Table 2 to
depict rare-MF operation. In the first example, we can see
that a rare word thrives is replaced into its most frequent tag,
VVZ for the source side. In the same way, words like beryl-
lium, Adit, or tungsten in the second example are replaced
into POS tags.

Once rare words are generalized using different methods,
further preprocessings are applied in order to form a parallel
data for MT training. Details are discussed in Section 6.2.

5. Scenarios
While an extensive amount of previous research investigate
the punctuation insertion task [3, 5], the impact of non-
matching domain in test case is under-explored. In order to
establish the importance of domain-match for this task, we

model three scenarios of in-domain data availability by uti-
lizing test data and training data from different sources. We
utilize in-house English and German data for different sce-
narios.

5.1. Matching Data

The first scenario simulates the case where we have enough
genre-matching training data. We take the training data and
test data from the same source and model and evaluate the
punctuation prediction system on the English TED data1.

The training data comprises of∼200K sentences of TED
corpus, while the in-domain test data is around 1K sentences
of TED. The audio reaches around 2 hours and 16 minutes.

By modeling this scenario, we aim to evaluate the impact
of generalizing rare words into POS tokens in the punctua-
tion prediction system, even when it is applied to a perfectly
genre-fitting input.

5.2. Small In-domain Data

In the next scenario, we consider the case where only a
limited amount of in-domain data is available. The model
is trained using around ∼200K sentences of German TED
data concatenated with 10K sentences of lecture corpus [18].
While the lecture corpus may share a similar style with the
TED corpus (monologue, lecture), the lecture corpus con-
tains a variety of domain-specific terms. The punctuation
insertion system is then tested on a lecture data. Its manual
transcript has 3K sentences, and its audio reaches around 6
hours and 32 minutes.

Detailed analysis on the data statistics is shown in Table
3. In the top two rows, we show the word count information
in the original corpus, before we replace rare words into POS
tokens. In the third line, we show how many words in the
training/test data (among all occurrences) are considered as
rare words according to the definition given in Section 4.1.
We can see that around 4.5% of words of training data are
rare words. About 2.0% of words in training data has oc-
curred only once throughout the corpus. In the lecture test
data, around 3.1% of words are unknown words, which were
not observed during the training. As the university lecture
corpus contains domain-specific terminologies, we can see
that overall 4.9% of words in the test data are rare words.
When using rare-MF method to generalize the rare and un-
known words, the training data has 14.7K unique words. The
number for test data is also decreased to 3.4K.

5.3. No in-domain data

In this scenario, we evaluate the English punctuation inser-
tion built on the TED data, described in Section 5.1, on an
online lecture corpus obtained from an internal project. The
manual transcript reaches around 700 sentences, with the au-
dio of a length of 1 hour and 55 minutes. The english online

1https://www.ted.com
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Table 2: POS replacement for rare and unknown word generalization

Original ... a type of bacteria that thrives at 180 degrees. I think that’s ...
rare-MF ... a type of bacteria that VVZ at 180 degrees. I think that’s ...
Original it doesn’t have any beryllium in it. it’s called the Pole Adit. and it does have tungsten, ...
rare-MF it doesn’t have any NN in it. it’s called the Pole NP. and it does have NN, ...

Table 3: Data statistics: German

Train Test
All word 3,866.2K 53.6K
Unique word 137.2K 6.2K
Rare word 4.51% 4.87%
Unknown word 1.95% 3.07%

lecture mostly covers its most recent technologies. Conse-
quently the test data contains a relatively higher proportion
of rare and unknown words. By applying the system on this
out-of-domain test data, we aim to show the effectiveness of
our system handling rare words.

Table 4: Data statistics: English

Train Test:in Test:out
All word 3,801.5K 20.3K 17.8K
Uniq word 63.5K 3.1K 1.8K
Rare word 2.63% 2.73% 4.54%
Unknown word 0.68% 1.07% 4.67%

Data statistics for English training and two test data are
summarized in Table 4. First two rows, same as before, are
showing general statistics of training and test data before the
POS-replacement operation was applied. We can see that the
ratio of rare words to all words in the corpus for both training
and in-domain test data is around 2.7%. However, this ratio
for out-of-domain test data rises to 4.5%. More importantly,
the out-of-domain data has a significantly higher ratio of un-
known word, 4.7%, compared to training as well as the in-
domain test data. The statistics shows that the out-of-domain
test data indeed includes a great proportion of unknown and
rare-words, which is replaced into POS tokens during the re-
placement operation. Using rare-MF system, the training
data has 11.9K unique words, in-domain test data 2.5K and
out-of-domain test data 1.3K unique words respectively.

6. Experimental Setups
Since this process already decreases the vocabulary size ef-
fectively, we did not use any sub-word units. The detailed
data statistics changed by this process will be discussed in
Section 5.

In this section, we discuss the architecture of NMT-based
punctuation insertion system as well as machine translation
systems used to translate the punctuated test data.

6.1. Punctuation Insertion by NMT-based System

Inspired by [5], all punctuation insertion systems are built
using the NMT framework lamtram [19], with an attention-
based encoder-decoder model.

The models were all trained with Adam, where the algo-
rithm is restarted twice and early stopping is applied. In [5],
authors investigated the tradeoff between network size and
performance. Following this work, we also configured that
the encoder uses word embeddings of size 128 and a bidi-
rectional LSTM [20] with 64 hidden layers for each direc-
tion. We use a multi-layer perceptron with 128 hidden units
for the attention. For the decoder, we use conditional GRU
units with 128 hidden units. Both networks are applied with
dropout at every layer with the probability of 0.5.

6.2. Data Preparation

General data preparation follows the work in [4]. Except for
tokenization and true-casing, no other preprocessing is ap-
plied for both input languages. The training data is randomly
cut so that sentence boundaries can be observed in any lo-
cation throughout the segment. Source side of the training
data consists of lower-cased words and/or POS tokens. All
punctuation marks are removed.

In this work, we build three systems to measure the im-
pact of generalizing rare words. The details of the generaliza-
tion scheme is given in Section 4.2. Since generalization of
rare words largely decreases the number of unique words in
the training data, we did not apply any sub-word operations
on the training data for the three systems.

As a baseline system, we build a system following the
work in [5], where no POS-replacement operation is applied.
Source words are instead applied with byte-pair encoding
of an operation size 40K. As another comparative system,
in addition, we build a system all-MF where all words are
replaced into their most frequent tag. In this system, thus,
source side text consists of POS tags only. For English all-
MF system, we introduce an additional POS tag for the word
I. Since this word is always uppercased in English, we be-
lieve that it is fair to introduce a separate token for it. Vo-
cabulary size for the all-MF system is therefore same as the
number of possible POSs in each language.

For all systems with different source side representation,
the target side follows the compact representation shown in
[5]. Therefore, the target side corpus consists of U (meaning
to be uppercased token), L (to be lowercased), and punctua-
tion marks. As punctuation marks, we only consider sentence
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boundary marks (.?!) and commas.

Test data is prepared in the same manner of training data,
where random line breaks are inserted, in order to simulate
ASR output.

6.3. Evaluation

As discussed in Section 5, English system, trained only
on TED corpus, is evaluated on two different test sets, in-
domain and out-of-domain test data. German system, whose
training data includes a small lecture corpus, is tested on a
lecture data.

The performance is measured intrinsically as well as ex-
trinsically. The accuracy of punctuation marks inserted into
manual transcripts is measured in F-score. Later this set is
translated into another language in order to measure the im-
pact of punctuation marks in translation performance. Ger-
man lecture data is translated into English, and English TED
data is translated into German. English lecture data is trans-
lated into Spanish following reference translation availabil-
ity. The detailed description of each machine translation sys-
tem used is given in Section 6.4.

The general system description for ASR is given in [21].
The training data for the English ASR system includes 450
hours of TED data. In addition, it also includes 30 hours of
lecture courses obtained from the same project.

6.4. Machine Translation Systems

Punctuated German test data is translated into English for
performance evaluation. The detailed description to Ger-
man to English machine translation system can be found in
[22, 23]. It is a phrase-based machine translation system that
is trained on European Parliament and News Commentary
corpora and adapted into TED and lecture domain.

The in-domain English test data, once it is punctuated, is
translated into German. We use a phrase-based MT system
described in [24]. The out-of-domain English test data has
a Spanish reference translation. In order to evaluate the im-
pact of punctuation prediction in this data, we use a neural
machine translation system.

The English to Spanish NMT system is trained using the
toolkit OpenNMT [25]2, with its default architecture. The
training data includes EPPS, NC, and TED corpora, where a
BPE of operation size 40K is applied. Additionally, we also
use a data from Wikipedia3 in order to support translation of
domain-specific words [26].

The impact of inserted punctuation marks on each test
data are measured in translation performance, in case-
sensitive BLEU [27].

2https://github.com/OpenNMT/OpenNMT-py
3https://wikipedia.org

7. Results and Analysis
In this section, we show the results of experiments, followed
by detailed analysis.

7.1. German Punctuation Insertion

In order to simulate scenarios with small in-domain training
data, we build a system on German in-house data. Table 5
shows the results for German manual transcript.

Table 5: Punctuation insertion performance: German lec-
ture manual transcript

System F-score De→En (BLEU)
Baseline 50.18 22.01
(1) unknown-NN 55.55 22.22
(2) rare-NN 55.23 22.30
(3) rare-MF 56.79 22.61
all-MF 47.21 21.25

When using rare-MF system to insert punctuation and
segmentation into manual transcript, we can see that we
achieve 6.6 points of F-score improvement over the base-
line. This improvement also led to better translation, yield-
ing 0.6 points of BLEU improvement by simply using dif-
ferent punctuation and segmentation into the same manual
transcript prior to translation. As comparison, we also show
the number of all-MF, where we can see the negative impact
of over-generalization of this system.

Table 6: Punctuation insertion performance: German lec-
ture ASR transcript

System De→En (BLEU)
Baseline 18.71
(1) unknown-NN 19.12
(2) rare-NN 19.16
(3) rare-MF 19.23
all-MF 18.53

Table 6 also shows how much we can improve the trans-
lation of ASR transcript when we use the punctuation inser-
tion system which generalizes rare words. Compared to the
baseline where no generalization is applied, we improve the
translation performance by 0.5 BLEU points. Thus, we can
observe that the rare words in the lecture test data can be
handled better when we use the rare-MF system.

When comparing the performance on manual transcripts
and ASR, we see that in both cases rare-MF leads to the best
performance. Also, in both cases, we improve the translation
performance by 0.5 BLEU points.

7.2. English Punctuation Insertion

Table 7 shows the performance for English manual tran-
scripts, tested on both in-domain test data and out-of-domain
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test data. As mentioned, we show the intrinsic performance
of punctuation insertion in F-score for each test data and ex-
trinsic performance in BLEU. In-domain test data is trans-
lated into German, while out-of-domain test data, lecture test
set, is translated into Spanish.

Table 7: Punctuation insertion performance: English in-
domain and out-of-domain manual transcript

System in-domainTest out-domainTest
F-score En→De F-score En→Es

Baseline 53.95 18.46 51.21 22.73
(1) unknown-NN 57.40 18.77 59.87 24.45
(2) rare-NN 59.23 19.16 57.93 24.45
(3) rare-MF 59.63 18.93 59.99 24.68
all-MF 38.10 16.87 42.82 20.89

We can observe that the rare-MF system yields a big im-
provement in F-score, 5.7 for in-domain test data and 8.8 for
out-of-domain test data. This improvement in the F-score is
also continued in the translation performance. The improve-
ment in translation performance is bigger for out-of-domain
test data, reaching around 1 BLEU point. The results show
that generalizing rare and unknown words does not only im-
prove the punctuation insertion but also the sequential appli-
cations’ performance. The over-generalization of the addi-
tional system all-MF shows a worse performance for both
test sets.

Table 8: Punctuation insertion performance: English in-
domain and out-of-domain ASR transcripts (BLEU)

System in-domainTest out-domainTest
En→De En→Es

Baseline 13.74 19.21
(1) unknown-NN 13.92 20.22
(2) rare-NN 13.74 20.13
(3) rare-MF 13.77 20.23
all-MF 12.44 17.85

We apply the same set of experiments for English ASR
transcripts. The results are shown in Table 8. For ASR tran-
scripts, we translate the punctuated output into different lan-
guages and measure the performance in BLEU. As shown in
the table, we can see that punctuation inserted from the rare-
MF system into the in-domain test data did not yield a big
performance improvement over the Baseline. For the out-of-
domain test data, however, the rare-MF improves the trans-
lation performance around 0.8 BLEU points, by inserting the
different punctuation marks and sentence segmentation only.
The results show the importance of rare word generalization
in the punctuation insertion system.

Another constant observation is that the more we lack
of in-domain training data, the bigger improvement we may
expect from using the rare-MF system.

7.3. Analysis

In addition, we measure the impact of using POS tokens over
rare words in overall speed.

Table 9: Running Time

English German
Baseline 0m56.219s 1m49.818s
rare-MF 0m47.242s 1m45.493s
all-MF 0m42.341s 1m36.889s

The results are shown in Table 9. We measure the time
used for decoding English in-domain test data and German
test data, both manual transcripts. It is worth to note that the
test sets are decoded in a CPU. We can see that decreasing
vocabulary on the source side by replacing rare words into
their POS tags, while keeping the target side vocabulary the
same, overall testing time is decreased by 85∼90% of the
baseline system. Faster runtime is therefore another advan-
tage of generalization of rare words, which is often crucial in
real-time applications.

Table 10 shows excerpts from the test data of the scenario
where we have only a little amount of in-domain training
data. We can observe that while the baseline system often
misplaces a punctuation mark, rare-MF offers a better per-
formance.

8. Conclusion

In this work, we showed that the performance of punctua-
tion and segmentation can be greatly improved by general-
izing rare and unknown words. In order to evaluate the im-
pact of this system, we set three different scenarios on in-
domain data availability. Our experiments show that we can
improve the F-score by 5.7 points even for the scenario where
we have a perfectly genre-matching training data. In the set-
ting where in-domain data is not available at all and therefore
rare/unknown words occur very frequently, F-score was im-
proved by 8.8 points and subsequently 1 BLEU point in the
following translation task of the punctuated test data.

In a detailed data analysis, we show that using this gen-
eralization also decreases source vocabulary dramatically.
Compared to the baseline where we use sub-word units, the
vocabulary size is decreased to 30∼37%. This also boosts
faster running time during the testing.

Future work includes combining this model with other
post-processing tasks for ASR, i.e. disfluency removal.
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Table 10: Excerpts from output using different segmentation and punctuation system

Excerpt 1

Baseline wir sind nur zehn Kilometer voneinander.
entfernt mit einem Auto fünfzehn Minuten.

En. gloss we are only ten kilometres from each other.
away with a car fifteen minutes.

rare-MF wir sind nur zehn Kilometer voneinander entfernt mit einem Auto, fünfzehn Minuten.
En. gloss we are only ten kilometres from each other away with a car, fifteen minutes.

Excerpt 2

Baseline Universitäten sind bottom-up.
strukturiert Ideen entstehen in kleinen Ecken ...

En. gloss Universtities are bottom-up.
structured ideas grow in small corners...

rare-MF Universitäten sind Bottom-up strukturiert.
Ideen entstehen in kleinen Ecken...

En. gloss Universities are bottem-up structured.
Ideas grow in small corners ...
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Abstract
In this paper, we introduce a novel approach to gener-

ate synthetic data for training Neural Machine Translation
systems. The proposed approach supports language vari-
ants and dialects with very limited parallel training data.
This is achieved using a seed data to project words from a
closely-related resource-rich language to an under-resourced
language variant via word embedding representations. The
proposed approach is based on localized embedding projec-
tion of distributed representations which utilizes monolin-
gual embeddings and approximate nearest neighbors queries
to transform parallel data across language variants.

Our approach is language independent and can be used to
generate data for any variant of the source language such as
slang or spoken dialect or even for a different language that
is related to the source language. We report experimental
results on Levantine to English translation using Neural Ma-
chine Translation. We show that the synthetic data can pro-
vide significant improvements over a very large scale system
by more than 2.8 Bleu points and it can be used to provide
a reliable translation system for a spoken dialect which does
not have sufficient parallel data.

1. Introduction
Neural Machine Translation (NMT) [1] has achieved state-
of-the-art translation quality in various research evaluations
campaigns [29] and online large scale production systems [3]
and [4]. With such large systems, NMT showed that it can
scale up to huge amounts of parallel data. However, such
large parallel data is not widely available for all domains
and language styles. Usually parallel training data is widely
available in written formal languages such as UN and Eu-
roparl data.

Real-time speech translation systems support sponta-
neous, open-domain conversations between speakers of dif-
ferent languages. Speech Translation Systems are becoming
a practical tool that can help in eliminating language barriers
for spoken languages. Those machine translation systems are
usually trained using NMT with large amount of parallel data
adapted from written data to the spoken style [5]. This is a
valid approach when the spoken and written languages are
similar and mainly differ in style. For many languages, the
written and spoken forms are quite different §2. While the

written form usually has an abundance of parallel data avail-
able to train a reliable NMT system; the spoken form may not
have any parallel data or even, in some cases, a standardized
written form.

In this paper, we propose a novel approach to generate
synthetic data for NMT. The proposed approach transforms
a given parallel corpus between a written language and a tar-
get language to a parallel corpus between the spoken dialect
variant and the target language. Our approach is language
independent and can be used to generate data for any variant
of the source language such as slang, spoken dialect or social
media style or even for a different language that is closely-
related to such source language.

The synthetic data generation approach is based on two
simple principles: first, distributional word representation
(word embeddings) can preserve similarity relations across
languages [6]. Secondly, a localized projection can be
learned to transform between various representations [7]. We
assume that we are trying to learn a translation system be-
tween F ′ and E, where F ′ is a variant of F , i.e. a spoken
dialect. We start from parallel corpus between the two stan-
dard languages F and E, then we transform it into a three-
way corpus between F , E and F ′. The proposed approach
assumes the existence of a seed bi-lingual lexicon or a small
seed parallel data between F ′ and either F or E.

The proposed approach is motivated by the assumption
that both Language F and its variant Language F ′ share
some vocabulary, have similar word orders and share similar
bi-lingual characteristics with Language E. We start by con-
structing a continuous word representation (i.e. word2vec
[6]) for each one of the three languages. Using the seed bi-
lexicon between either E and F ′ or F and F ′, we train a
local projection to transform the words across the different
representation spaces.

We used the proposed approach to generate spoken
Levantine-English data from Arabic-English data then we
experimented with utilizing the generated data in various set-
tings to improve translation of the spoken dialect. The rest
of this paper is organized as follows, Section §2 presents an
overview of spoken dialects since it is the focus application
of this work. Section §3 discusses related work. Section §4
presents a brief overview of Neural machine translation. Sec-
tion §5 discussed in detail the proposed approach for generat-
ing data. Section §6 presents the experimental setup. Finally,
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we discuss the results and conclude in section §7.

2. Spoken Language Variants
Some languages present an additional challenge to Spoken
Language Translation (SLT) when the spoken variant differs
significantly from the written one. Moreover, sometimes the
spoken language used in the daily life is quite different than
the standard form used in the education system as well as
in formal communication such as news papers and broad-
cast news. For example, Singapore English (Singlish) is
an English-based creole with a mix of English, Mandarin,
Malay, and Tamil [8]. Similarly, the standard form of written
Arabic is Modern Standard Arabic (MSA); however, it is not
the spoken mother tongue by Arabic speakers. The Arabic
spoken dialects vary by geo-graphical region with at least five
dialects: Egyptian, Levantine, Iraqi, gulf, and North African.
While all dialects are stemmed from MSA, they are quite
different phonologically, lexically, morphologically and syn-
tactically. For example, spoken colloquial Levantine Arabic
conversations share between 61.7% and 77.4% of their vo-
cabulary with a written news corpus from the same region
[9]. This results in spoken dialects that are quite different and
not even well interpreted between Arabic speakers of differ-
ent dialects.

Most of the spoken language variants stem from a more
formal written language such as Singlish from English and
Levantine from MSA. While the spoken dialects do not usu-
ally have parallel data, they enjoy a wide adoption on so-
cial media which results in large monolingual corpora for
such spoken variants. In this work, we are proposing a novel
approach to overcome such limitation for spoken languages
through generating parallel data leveraging the spoken di-
alects monolingual data and the written form parallel data.

In this paper we focus on Levantine-English translation
as the pressing need for such translation systems due to
the refugee crisis that dictates the need for a reliable open-
domain translation from Levantine to English.

3. Related Work
There have been a number of proposed approaches to learn
synthesized translation units for statistical machine transla-
tion systems such as [14], [15] and [7]. Such approaches fo-
cused on learning translation rules that would fit into a statis-
tical phrase-based system. Those approaches do not fit into
Neural Machine Translation (NMT) systems which require
full context to learn to encode the sentences.

A number of approaches have been proposed utilizing
monolingual target data into NMT training. Most notably,
[16] used monolingual sentences by generating pseudo par-
allel data through back-translating the monolingual data and
using it in the reverse direction to improve NMT systems.
Back-Translation showed significant improvement especially
in domain adaption setups. The back-translation approach is
not directly comparable to ours, since ours does not require

a pre-trained system while back-translation does require one.
However, we are using a seed parallel data as a source of our
lexicon and it would be fairly comparable to use such data in
both settings as we report in our experiments.

Dialectal Arabic translation has been a well-known prob-
lem; [11] tried to solve this problem by crowd-sourcing
translation for dialect data. They translated around (160K
sentences) of Levantine and Egyptian data. The main limita-
tion of this approach is that it is quite limited and not scal-
able. The vocabulary of the collected data is not sufficient
to provide open-domain translation system. On the other
hand, [12] and [13] tried to solve the problem by applying
rule-based transformation between Levantine or Egyptian to
MSA. The main limitation of such approaches is that they
require extensive linguistics knowledge to design the conver-
sion rules which are not flexible to new vocabulary and styles
that are constantly being introduced to the spoken languages.

4. Neural Machine Translation
Neural Machine Translation is based on Sequence-to-
Sequence encoder-decoder model as proposed in [31] along
with an attention mechanism to handle longer sentences [1]
and [25].

In this work, we use an in-house implementation [4] for
attention-based encoder-decoder NMT which is similar to
[1]. NMT is modeling the log conditional probability of the
target sequence given the source as shown in eqn1:

log p(y|x) =

n∑
k=1

log p(yk|y<k, x) (1)

NMT follows encoder-decoder architecture; the encoder
is a bidirectional recurrent neural network (LSTM) that cal-
culates the hidden encoder state at each word h1h2...hm. The
decoder is another recurrent neural network (LSTM) as well
that calculates the hidden state at each decoded output state
s1s2....sn. Then a softmax is applied to get a distribution
over target words.

yk = softmax(g(yk−1, sk, ck)) (2)

where ck is calculated by the attention mechanism which is
a weighted sum of the encoder’s hidden states that deter-
mines the importance of each encoder hidden state to the
predicted output. The attention mechanism represents the
variable length input sequence as a weighted fixed-dimension
context vector ck

ck =

m∑
i=1

αkihi (3)

where αki is calculated as a normalized weight of the as-
sociation between the previous decoder state sk−1 and the
current encoder state hi which is calculated as a dot product
as described in [25].
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During training, all model’s parameters are optimized
jointly using stochastic gradient methods to maximize the
conditional probability of all sentence pairs in the training
data. At decoding time, one word is predicted at each step, a
beam search is used to score the best translation path.

5. Synthesized Data Generation
Our data generation approach is motivated by two obser-
vations: firstly, distributional representations of words have
been found to capture syntactic and semantic regularities in
languages. In such continuous representation space, the rela-
tive positions between words are preserved across languages
[6]. Secondly, the representation spaces have localized sub-
clusters of neighboring data points that form smooth mani-
folds [18] which can be leveraged to learn a localized trans-
formation between the sub-clusters in different spaces across
languages [7]. Since the sub-clusters are formed by similar
words, a mapping can be learned between sub-clusters across
representations. We exploit those characteristics to design
our synthetic data generation approach.

The proposed approach assumes the availability of three
resources: (1) parallel data between Language F and Lan-
guage E, (2) a seed lexicon or seed parallel data between
either E and F ′ or F and F ′. (3) Monolingual corpora for
E, F and F ′ to train word vectors. The resulting synthe-
sized data is a three-way data (F -F ′-E). In this paper, we
use a seed parallel data to acquire the lexicon between E and
F ′ through word alignment. However, a pre-existing lexicon
can be used exactly the same way.

Figure 1 illustrates the data generation process. For illus-
tration purposes, let’s assume that E is English, F is Spanish
(ESN) and we would like to generate F ′ which is Catalan
(CAT) to English parallel data 1 . Furthermore, we assume
that we have a seed lexicon between Catalan F ′ and English
E which we call BiLexicon.

We build three distributional representations (i.e.
word2vec) using monolingual corpora: the first is a target
representation for E, English in our example . The second
is mixed source representation F -F ′ (Spanish-Catalan in our
example). And the third is a Catalan (F ′) only embedding.

The data generation proceeds as follows:

• For each English word e in a sentence from F -E par-
allel data, we query its k-nearest neighbors (k-NN)

• k-NN query on the E embedding results in a sub-
cluster of k English words around e.

• If the k queried neighbors do not contain at least m
words in BiLexicon, we repeat the query with 2k.

• If no m neighbors words can be retrieved, the process
terminates for this word and move to the next word.

• We use m to query BiLexicon for equivalent words in
the F ′ space.

1The languages in the example are for illustration purposes only

• As shown in Figure 1, we use the two localized sub-
clusters inE (English) andF ′ (Catalan) spaces to learn
a localized projection between the two spaces. This is
done using Local Embedding Projection (LEP) §5.3.

• The locally trained LEP is used to project the current
E word e to its equivalent vector in the F ′ space.

• We perform k-NN query around the projected vector
in the F ′ (Catalan) space to get n candidates words.

• We then rank the n candidates words according to their
similarity with the F (Spanish) words f aligned to the
current English word e based on word alignment of the
F -E parallel data.

• The similarity is calculating cosine Similarity (SIM)
in the Spanish-Catalan space between the candidate
Catalan words and the Spanish word(f ).

• The top ranked Catalan word f ′ is selected and substi-
tuted in palace of f

• Alternatively, we can obtain the alignment information
between E (English) and F (Spanish) words either by
conventional word alignment techniques or by using
Bi-Lingual embeddings as described in Section §5.1.

It is worth noting that for one-to-many mappings, we
construct a composed vector for the multiple words by per-
forming addition of their corresponding vectors. There are
a few other approaches to compose multi-words vectors.
However, it has been shown empirically that simple additive
method achieves good performance [27].

Later on, we discuss the main components we utilize in
the generation process: Word Representation §5.1, efficient
Nearest Neighbors Search §5.2 and Local Embedding Pro-
jection §5.3.

5.1. Word Representation

Continuous representations of words have been found to
capture syntactic and semantic regularities in languages
[6]. The induced representations tend to cluster similar
words together. We directly use continuous representations
learned from monolingual corpora such as Continuous Bag-
Of-Words (CBOW) representation. In such continuous rep-
resentation spaces, the relative positions between words are
preserved across languages. As shown in Figure 1, we learn
three independent representations for spoken source, target
and mixed sources. Those can be learned from monolingual
corpora using off-the-shelf tools such as word2vec [6].

We require a mapping between the words in the original
parallel corpus which can be obtained by performing word
alignment on the parallel sentences. Alternatively, this re-
quirement can be relaxed by using a bi-lingual embedding
trained on any parallel corpus such as Bivec [26]. Instead
of using word alignment to map the source word to target
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ENU: this is a white catESN: este es un gato blanco

CAT: aquest és un gat blanc

cat

dog
kitten

puppy

gato
gat

gatos

gats

perro

gos

cadell

gatsgat

gos
LEP

English 
EmbeddingCatalan 

Embedding

Catalan-Spanish  
Embedding

Figure 1: Synthetic Data Generation Using LEP

word(s), we initiate a query to bilingual representation to re-
trieve the most likely target word mapped to a given source
word. This can be handy in the case of using comparable
corpus rather than parallel corpus. We evaluate the merit of
this approach in §6.4

5.2. Nearest Neighbors Search

The algorithm discussed above, requires an extensive num-
ber of k-NN queries per word, which are the most time-
consuming part of the procedure. A brute force k-NN query
requires a linear search over the whole source or target vo-
cabulary which is usually in the order of millions requiring
O(n) search. This dictates the need for a fast approximate
k-NN query technique. While such techniques are widely
used in various machine learning areas especially in vision
application, they are not well explored for text applications.

Approximated k-NN query usually involves two steps,
an offline index construction step and an online query step.
While the offline step does not affect the run-time, it can be
memory consuming. A good approximation sacrifices the
query accuracy a little bit, but speeds up the query by or-
ders of magnitude. Locality Sensitive Hashing (LSH) [19]
is a popular technique, but its performance decreases as the
number of dimensions grows, therefore it is not a good match
for high dimensional spaces like ours. In this paper, we use
Multiple Random Projection Trees (MRPT) [20] for approx-
imated k-NN queries.

MRPT [20] uses multiple random projection trees to get a
more randomized space-partitioning trees. The random pro-
jection trees result in splitting hyperplanes that are aligned
with random directions sampled from the space hypersphere
instead of the coordinate axes. Moreover, it utilizes voting
search among the random projection trees to provide more
randomization that leads to fast query times and accurate re-
sults. At run-time, a query p is routed down in several trees,
and then a linear search, similar to RBV, is performed in the
union of the points of all the leaves the query point fells into,
the result is the approximated k-nearest neighbors to p.

5.3. Localized Embedding Projection (LEP)

The k-NN queries result in two local clusters as shown in
Figure 1. Given a word in one of the sub-clusters we want to
find similar word(s) in the corresponding target sub-cluster.
We use Localized Embedding Projection (LEP) to achieve
this task.

LEP is based on simple intuition: the two sub-clusters
represent smooth manifolds where each data point in a sub-
cluster can be mapped to a corresponding data point in the
other sub-cluster using local linear transformation. LEP has
been successfully used in [7] to transform between vari-
ous representations based on the locally linear embedding
method which was originally proposed in [18] for dimen-
sionality reduction.

LEP utilizes a localized projection matrix for each word,
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this is unlike global linear projection, as proposed in [6],
which uses a single projection matrix for the all words in
the space. As shown in [7], it can be brittle to small non-
linearity in the representation vector space and therefore it is
not a good choice for all possible words. Unlike global pro-
jection, local projection requires an additional k-NN query
to find the neighbors of each word.

In LEP, a linear projection Wf is learned for each
word f to map between its neighbors to the neighbors
of the projected points in the projected/translation space.
(f1, e1), (f2, e2), . . . , (fm, em), fi ∈ N(f).

Let’s denote f and e as source side and target side
words respectively, and f and e as the corresponding words
vectors. Following [6], we learn the linear projection W
from the translations of the n most frequent labeled source
side phrases: (f1, e1), (f2, e2), . . . , (fn, en). Denote F =
[fT1 , f

T
2 , . . . , f

T
n ]T , E = [eT1 , e

T
2 , . . . , e

T
n ]T . W is calculated

by solving the following linear system:

FW = E,

whose solution is:

W ≈ (FTF )−1FTE.

Once the linear transform W is known, for each word f ,
fW = ē is the location in the target side that should be close
to the target words representing similar meaning. A k-NN
query can fetch all the target word vectors near point ē.

6. Experimental Setup
We used the proposed approach to generate spoken
Levantine-English data from Arabic-English data then we
experimented with utilizing the generated data in various set-
tings to improve translation for the spoken dialect.

6.1. Datasets

The only publicly available Dialectal Arabic to English par-
allel corpus is LDC2012T092 [11]. It consists of about 160K
sentences of web data of mixed Levantine and Egyptian man-
ually translated to English. We use this data set as our base-
line and as a source for the seed lexicon between English and
Levantine.

Our main focus is to develop an open-domain conver-
sational translation system for Levantine-English. In recent
translation evaluations, OpenSubtitles data [32] has been
found to yield good translation quality for conversational do-
mains compared to other data sources [5]. Therefore, we
opt for using OpenSubtitles-20133 which consists of 3M
sentences as our Arabic(MSA)-to-English parallel corpus, to
generate Levantine-English Parallel corpus.

We have created a three-way test set to evaluate this work
(LEV-ENG-Test), where the source is transcription of spon-
taneous Levantine audio conversations translated into both

2https://catalog.ldc.upenn.edu/LDC2012T09
3http://opus.lingfil.uu.se/

Corpus English Arabic MSA Levantine
# of Tokens 2B 1.1B 106M
# of Word Vectors 5.1M 6.8M 1.5M

Table 1: Monolingual corpora used in experiments.

English and MSA Arabic. The test set is composed of 6K
sentences and has been used to report all results in this paper.

We used monolingual corpora to train three distributional
representations of English, Levantine and Mixed (MSA with
Levantine. The data mostly consist of Gigaword corpora,
UN data, Subtitles and web crawled data. The information
of these corpora is listed in Table 1.

After that we use the off-the-shelf Word2Vec [6] to gen-
erate the word embeddings for each language using the Con-
tinuous Bag-Of-Words scheme, where the number of dimen-
sions d = 250, window = 5, mincount = 5.

6.2. Data filtering

Our proposed approach depends on the quality of the paral-
lel data, we have noticed that OpenSubtitles data has a lot of
misaligned or badly translated sentences. Therefore, we have
trained a decision tree classifier to identify whether the sen-
tence pair is noisy or not. We reject the sentence pairs that
are noisy. The decision tree classifier utilizes features from
the meta-data of the aligned sentence pairs, namely: number
of source words, number of target words, unaligned percent-
age, length-normalized alignment confidence score and per-
centage of one-to-one alignments. We used 150 sentences
manually annotated to train the classifier with Gini impurity
with minimum samples split of 2 and minimum samples leaf
of 1.

On the word level, we have applied a named entity tagger
to detect named entities on either source or target sides to
avoid mangling them. We also used a stop-word list to avoid
mapping them.

6.3. NMT model and Pre-Processing

Our NMT system is described in §4, we use a bidirectional
encoder with 1024-units LSTM and 2 layers decoder with
attention. We use embedding size of 512 and dropout of 0.2.

For pre-processing, we use Byte Pair Encoding PBE [29]
with 32000 merging operations separately on the source and
target. This results in 35K source and 34K target vocabular-
ies. We limit the length of the sentences to 50 words. The
training is done using Stochastic Gradient Descent (SGD)
with Adam[21]. We use mini-batch size of 64 and train for
1M steps. The translation quality is measured with lower-
cased BLEU.

Across all experiments we use those hyper parameters for
the data generation process described in §5: k = 200, n = 3
and m = 5.
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System Data Size B LEV-ENG-Test
Baseline 160K 16.15

Gen-BiVec 210K 16.43
Gen-Align 210K 16.98

Table 2: Translation performances using BLEU on LEV-
ENG-Test for using Bivec vs. word alignment

6.4. Bivec vs Word Alignment

In the first set of experiments, we have evaluated whether
we should use word-alignment information or Bivec §5.1
to connect the source and target words in the given paral-
lel data. As shown in Table 2, our Baseline is trained on
LDC2012T09 (160K) of mostly Levantine-English data. We
then generate 50K sentences from Arabic-English Subtitles
data with bilingual embedding (Gen-Bivec) and without it
(Gen-Align). When we are not using Bivec, we just use the
word alignment information on the Arabic-English parallel
corpus to get the mapping between the words. The result
shows that using alignment information is better than using
Bivec in this case. It worth noting that using Bivec may be
handy if the data is comparable data. In the rest of this work
we used word alignment information since it yields better
performance.

6.5. Data Generation Experiments

In this set of experiments, we added more generated data
from the subtitles data applying the filtering described above
§6.2. We end up with 1.1M sentences candidates for gen-
eration which we use for generating LEV-ENG data. In
this setup, we also compared our approach with back-
translation [16] which is commonly used with NMT. The
back-translation is not directly comparable to ours, since ours
does not require a pre-trained system while back-translation
does require one. However, we are using a seed parallel data
as a source of our lexicon and it would be fairly comparable
to use such data in both settings.

Furthermore, we investigated two different models to uti-
lize the synthetic data. The first just used the LEV-ENG data
while the second leveraged the 3-way characteristic of the
generated corpus LEV-MSA-ENG.

We train the following systems:

• Baseline: This is trained on LDC Levantine-English
corpus of 160K. Which is also part of all other systems
reported below.

• Baseline-PBMT: this is the same as above but trained
as a phrase-based system, following standard practice.

• Baseline-MSA: This is trained on LDC data in addi-
tion to 1.1M sentence pairs of filtered subtitles data
which is MSA-English.

• BT: We trained an English-Levantine system similar to
the Baseline though in the reverse direction; we used it

System BLEU on LEV-ENG-Test
Baseline 16.15

Baseline-PBMT 16.42
Baseline-MSA 15.37

BT 16.59
Gen-Mono 17.33

LEV-MSA–MSA-ENG 12.87

Table 3: Translation performances in BLEU for NMT with
Generated data

to back-translate the 1.1M subtitles data from English
into Levantine.

• Gen-Mono-1M: This is the system using the generated
LEV-ENG data.

• LEV-MSA–MSA-ENG: This a pipeline system where
we train a system to convert LEV to MSA using the 3-
way generated data, followed by MSA to ENG trans-
lation.

Table 3 shows that adding the MSA subtitles data
(Baseline-MSA) hurt the performance, this is quite expected
since the data is mainly MSA but it add a fair comparison in
terms of the size of the training data. The phrase-based base-
line is slightly better than NMT baseline as expected in such
low resource case.

Back-translation helped a little bit ( 0.3 BLEU), we think
the system trained on LDC parallel data is quite small to pro-
vide good lexical coverage to generate variates of the trans-
lated data that can help in back-translation.

Adding the synthetic data (Gen-Mono) is quite useful
and improves the performance by more than 2 BLEU points.
Compared to back-translation, the synthesized data utilized
monolingual representation which can lead to lexical vari-
eties that help in having better translation examples.

Since the generated data is a 3-way corpus LEV-MSA-
ENG, we can leverage this by training a system that translates
from LEV to MSA. At run-time, we use a pipeline of two sys-
tems: LEV-MSA followed by MSA-ENG. We experimented
with two variants of LEV-to-MSA system, subwords-based
and character-based. We found out that the system is not pro-
ducing reasonable results since it produces MSA words not
related to the LEV words in input. We think one reason is
that MSA and LEV shares a lot of their vocabulary together;
in our monolingual data sets listed in Table 1, they share
58% of their vocabulary. The system tends to replace MSA
words (in LEV input) to other MSA words. The resulted out-
come is very noisy MSA sentences that not closely related to
the LEV input.

6.6. Open-domain NMT System Experiments

Our main objective in this work is to enable large scale NMT
systems to support spoken dialects. Therefore, we experi-
mented with a very large scale Arabic-English open-domain
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System LEV-ENG-Test LEV-MSA-ENG NIST08
Large-Sys 25.03 28.20 53.45

Large+GenData 27.91 28.32 53.42
Large+Adapted 27.37 27.45 52.97

Table 4: Translation performances in BLEU for Large Scale
NMT with Generated data

system trying to adapt it to Levantine using the synthetic
data. The large scale system uses UN data, subtitles data and
various web crawled data with a total of 42M parallel sen-
tences. The system is an ensemble of two identical systems
that only differ by initialization, each ensemble is trained for
10 epochs on the data. We tried two approaches to utilize
the synthetic data: adding it to the training data as usual and
adapting one of the two ensembles by continuing to train it on
the synthetic data for 2 more epochs, similar to the approach
proposed in [23].

For this set of experiments, we have added 2M syn-
thetic Levantine-English sentences. We also report results
on NIST-08 Arabic-English which is a 4-references test-set
4. Furthermore, we report results on the human converted
LEV-MSA-ENG which is the same as LEV-ENG-Test test-
set but translated into MSA as well by human annotators.
Since LEV data is converted to MSA by annotators, trans-
lating the human-converted test set can represent the oracle
score that we can get using an MSA trained system on this
test set. This would help us understand how good the system
using the generated data compared to MSA systems.

As shown in Table 4, we get a very good improvement
when adding the synthetic data as additional training data
(Large+GenData) with 2.8 BLEU points. The performance
of the system with the synthetic data is just 0.3 BLEU less
than the oracle score on the human translated MSA (27.91
vs 28.20). Moreover, the addition of the synthetic data did
not negatively affect the MSA NIST08 test sets as well; this
simply enables us to have a single system to serve both writ-
ten and spoken variants. This is a nice characteristic of NMT
systems where encoders can successfully handle varieties of
source data as has been utilized in multi-lingual systems [22].

Adapting the system did help as well but not as good as
re-training from scratch, however it may be a good option to
avoid retraining the large system again.

Figure 6.6 shows some cherry picked examples that show
the improvement of the proposed approach compared to
GNMT [3] online neural system. It is quite clear that our
system is doing much better compared to a large scale neural
system.

7. Discussion and Conclusion
In this paper we presented a novel approach for generating
synthetic parallel data for spoken dialects to overcome the
limitations of the training data availability for such language

4https://catalog.ldc.upenn.edu/LDC2010T01

variants. We show that we need to start from a correspond-
ing parallel data and a seed lexicon or small parallel data.
The results show that this approach is quite efficient and use-
ful to improve general purpose NMT systems to the spoken
variants.

As for the future work, we would like to investigate the
utilization of this approach for more languages as well as
different variants such as social media text translation. As
a further step, we are investigating the possibility of train-
ing the transformation process end-to-end within the neu-
ral machine translation system using a single neural network
through learning the transformation from the sample seeds
while making use of the monolingual corpus to learn the em-
beddings.
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Abstract

Translating noisy inputs, such as the output of a speech rec-
ognizer, is a difficult but important challenge for neural ma-
chine translation. One way to increase robustness of neu-
ral models is by introducing artificial noise to the training
data. In this paper, we experiment with appropriate forms
of such noise, exploring a middle ground between general-
purpose regularizers and highly task-specific forms of noise
induction. We show that with a simple generative noise
model, moderate gains can be achieved in translating erro-
neous speech transcripts, provided that type and amount of
noise are properly calibrated. The optimal amount of noise
at training time is much smaller than the amount of noise in
our test data, indicating limitations due to trainability issues.
We note that unlike our baseline model, models trained on
noisy data are able to generate outputs of proper length even
for noisy inputs, while gradually reducing output length for
higher amount of noise, as might also be expected from a hu-
man translator. We discuss these findings in details and give
suggestions for future work.

1. Introduction
Many natural language processing tasks require applying se-
quence models on corrupted or noisy input sequences. A
typical example is machine translation of erroneous outputs
from an automatic speech recognizer (ASR). Ideally, we
would like the translation process to ignore or even correct
the corrupted inputs. Translation models are usually trained
on wellformed parallel sentences that do not exhibit such
noise. This results in a harmful mismatch between training
and test data, and further aggravates the difficulty of hav-
ing to transform malformed inputs in the first place. The
now prevalent neural sequence-to-sequence models [1, 2, 3]
have been identified to be especially sensitive to noisy data
[4, 5, 6], and more specifically to corrupted inputs due to er-
roneous ASR [7].

Robustness at test-time may be improved by inducing
suitable forms of noise during the training process. The spec-
trum of suitable approaches ranges from general-purpose
regularizers1 such as dropout [9] to task-specific approaches

1In this paper, we use the notions of good generalization (avoiding over-
fitting, e.g. via regularization) and robustness (stability w.r.t. noisy data)

that alter the training data to resemble the corrupted inputs
at test-time. Task-specific approaches can make stronger
assumptions about the data distribution and are potentially
more effective or provide additive gains when combined with
general-purpose methods. As a disadvantage, they are also
more complex and may require task-specific knowledge or
resources. Another tradeoff to consider concerns trainabil-
ity. Neural sequence-to-sequence models are known to suf-
fer from explaining-away effects, where models may learn to
generate outputs by relying on the target-side context while
ignoring the source-side context [10, 11], especially when the
source side provides only a weak or noisy signal. As a result,
careful calibration of type and amount of induced noise may
be necessary.

Prior work on speech translation attempted inducing
task-specific noise by training on actual ASR outputs paired
with their correct translations. Unfortunately, such data is
scarce, and exploiting it may not be straightforward (see [12]
and §4.1; but [13]). Alternatively, it has been proposed to
synthesize realistic ASR error patterns and suitable trans-
lations thereof, and augment the training data accordingly
[14, 15]. However, this approach has not yet been shown to
transfer to neural machine translation, and is relatively com-
plex, requiring availability of resources such as pronuncia-
tion dictionaries and suitable language models.

In this paper, we seek to improve robustness of a neural
machine translation model applied to speech recognition in-
put by exploring tradeoffs between general-purpose and task-
specific methods. For this purpose, we introduce a simple
noise model that is inspired by the word error rate (WER),
which categorizes the common ASR error types into sub-
stitutions, insertions, and deletions. Accordingly, our noise
model artificially corrupts the source side of a parallel train-
ing corpus by randomly introducing substitutions, insertions,
or deletions. Our noise model is simpler than the prior ap-
proaches [14, 15], but nonetheless effective, and provides a
flexible test bed that allows exploring the middle ground be-
tween task specificity and generality in the context of neu-
ral sequence-to-sequence models. In addition, we discuss
preliminary efforts toward refining the noise model to cap-
ture more task-specific intuitions similar to these prior ap-

loosely interchangeably. In fact, both are strongly linked in the sense that in
general, good generalization implies robustness [8].
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proaches.

We conduct experiments on the Fisher and Callhome
Spanish–English speech translation corpus [12] and observe
minor improvements in robustness when applying our noise
model. We find that increasing the amount of noise during
training up to a certain point helps translation of noisy inputs
but hurts translation of clean inputs. Strikingly, the optimal
amount of noise is much smaller than the amount of noise
in our test data, indicating trainability issues. Increasing the
amount of noise further leads to a drop in recall but slight
increase in precision, leading to the question of to what ex-
tent it is desirable from a usability perspective to drop uncer-
tain source-side content as opposed to guessing a translation
for it. We conclude with discussing shortcomings of our ap-
proach and give suggestions for future work.

2. Related Work

Inducing noise in the training inputs can be seen as a form of
data augmentation, which has been used in several applica-
tions such as acoustic modeling [16], computer vision [17],
language modeling [18], and statistical machine translation
where data can be augmented by paraphrases [19]. It has
been described as more powerful than general-purpose reg-
ularization in the context of deep learning [17]. Note that
these approaches aim at inducing label-preserving noise, in
contrast to our noise model which may alter or destroy the
meaning of an input despite keeping targets unchanged. Data
augmentation has also been used specifically to improve ro-
bustness to noisy inputs as in our work, such as research on
speech recognition under noisy conditions [20] and translat-
ing spelling mistakes [5, 6]. The latter work demonstrates the
importance of using natural (as opposed to synthetic) noise
to make models robust to realistic noisy test-time conditions.

Several works have identified noisy or mismatched text
inputs as a challenge for neural models: [21] mention domain
mismatch as a challenge for neural machine translation, [4]
show that NMT suffers from noisy training data, [22] show
that recurrent neural networks can be sensitive to corrupted
input sequences.

Our approach is methodologically inspired by reward-
augmented maximum likelihood (RAML) [23]. We use a
similar sampling procedure on the source side, instead of
the target side as in RAML. However, RAML is very dif-
ferently motivated, aiming at fixing exposure bias whereas
we are concerned with noise from upstream components. In
addition, sampling according to [23]’s approach is biased to-
ward producing less deletions than substitutions and inser-
tions, which our noise model purposefully avoids.

Finally, prior work has dealt with uncertain inputs from
upstream components through explicit representation of the
uncertainty, for example by directly translating word lattices
produced by the speech recognizer [24, 25, 26, 27].

3. Noise Model
This section introduces a noise model that will be applied to
every input sentence of the training data. The general idea
follows the intuitions behind the WER, according to which
ASR errors can be categorized into substitutions, insertions,
and deletions. Design goals are flexibility to capture various
levels of refinement, and convenient control of the amount
of noise and other properties. We first describe the vanilla
model, and then present several refinements.

3.1. Vanilla Noise Model

The vanilla noise model, outlined in Algorithm 1, can be
summarized as follows. For each sentence, we first decide on
the number of edits, while considering the desired amount of
overall noise. The edits are then randomly divided into sub-
stitutions, insertions and deletions. Finally, for each edit a
position is randomly chosen along with a new word for sub-
stitutions and deletions.

More formally, let hyperparameter τ∈[0, 1] denote
the amount of noise to be induced, let V be a sam-
pling vocabulary, and assume a sentence of length n as
〈w0=sos, w1, · · · , wn, wn+1=eos〉. We first draw the num-
ber of edits e (line 1). The Poisson distribution is a suitable
choice because it is defined over non-negative integers and
has probability mass centered around its mean. For simplic-
ity, we allow a maximum of n edits for a sentence of length
n. Thus, we sample according to a n-truncated Poisson dis-
tribution [28], defined as Pλ(k) ∝ exp(−λ)λ

k

k! with support
k ∈ {0, · · · , n}, where we set λ := τ · n. The mean of
this distribution is approximately λ. Because of the finite
support, this distribution reduces to a categorical distribution
and is thus trivial to sample from.

Next, we draw the number of substitutions ns, num-
ber of insertions ni, and number of deletions nd such that
ns+ni+nd = e and ns, ni, nd ∈ N0 (line 2). This defines
a space over 〈ns, ni, nd〉, known as the discrete 3-simplex
[29]. We sample from a uniform distribution over this space
(§3.1.1).

We then draw without replacement a position for each
substitution, insertion, and deletion (lines 3, 4, 5). Finally,
we corrupt the original sentence accordingly (lines 6 through
16), sampling new words for substitutions and insertions uni-
formly from the sampling vocabulary (lines 7 and 14).

3.1.1. Sampling from the Discrete Simplex

In order to determine the number of edit operations
n1, · · · , nd for each operation type (here: ns, ni, nd, cor-
responding to substitutions, insertions, and deletions), we
uniformly sample 〈n1, · · · , nd〉 ∼ DiscrSimplex (d, e) such
that

∑d
i=1 nd = e and ni ∈ N0. This can be accomplished

by slightly adjusting the sampling approach for the continu-
ous simplex [30] to the discrete simplex as follows. Sample
auxiliary random variables x1, · · · , xd−1 uniformly without
replacement from {1, 2, · · · , e+d−1}. Let x0=0, xd=e+d.
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Algorithm 1 Vanilla Noise Model.
– given magnitude of noise: τ ∈ [0, 1]
– given sentence 〈w0=sos, w1, · · · , wn, wn+1=eos〉
– given vocabulary V

1: sample distance e ∼ TruncPoisson (τ · n, n)
2: sample 〈ns, ni, nd〉 ∼ DiscrSimplex (3, e)
3: sample substitution positions s1, · · · , sns uniformly

without replacement from {1, · · · , n}
4: sample insertion positions i1, · · · , ini uniformly without

replacement from {0, · · · , n}
5: sample deletion positions d1, · · · , dnd uniformly without

replacement from {1, · · · , n} \ {s1, · · · , sns
}

6: for i← 1 · · ·ns do
7: uniformly sample w̃ ∼ V
8: replace wi ← w̃ . substitution
9: end for

10: for i← 1 · · ·nd do
11: replace wi ← ε . deletion
12: end for
13: for i← ni · · · 1 do
14: uniformly sample w̃ ∼ V
15: insert w̃ between wi and wi+1 . insertion
16: end for

Finally, let ni = xi−xi−1−1,∀i∈{1, 2, . . . , d}. Proof of
correctness directly follows argumentation in [30].

3.2. Refinements

The following discusses several simple steps, all aiming at
making the sampled noise more similar to the ASR outputs.
For more elaborate refinements, we refer to prior work [14,
15].

3.2.1. Sampling Vocabulary: Linguistic Conditioning

The vanilla model draws substitutions and insertions uni-
formly from the vocabulary (lines 7 and 14), causing a large
portion of induced noise to be drawn from the long tail of
rarely occurring words. As a more linguistically informed
strategy, we can draw from a unigram instead of a uniform
distribution over the vocabular, replacing lines 7 and 14 ac-
cordingly.

3.2.2. Sampling Vocabulary: Acoustic Conditioning

Preferably, substitutions would be chosen based on acous-
tic similarity to the original input. Here, we use nega-
tive character edit distance as an approximation for acoustic
similarity, and sample according to exponentiated distances
p(w̃|w) ∝ exp(−dist(w, w̃)), replacing lines 7 and 14.

3.2.3. Sampling Positions

ASR tends to err more often for certain types of words than
others. For example, shorter tend to be confused more often

because these words can suffer from linguistic and acous-
tic ambiguity. We can model this by substituting or deleting
short words more often, again working with an exponentiated
distribution p(pos = j) ∝ exp(−|wj |) (lines 3 and 5).

3.2.4. Proportion of Error Types

ASR usually produces more substitutions than insertions and
deletions. We may wish to reflect this in our noise distri-
bution, for example by drawing edit operations from a 7-
simplex and assigning 1 bucket to insertions, 1 bucket to
deletions, and 5 buckets to substitutions2 (lines 1 and 2).

4. Experiments
We conduct experiments on the Fisher and Callhome
Spanish–English speech translation corpus [12], a corpus
of Spanish telephone conversations that includes ASR tran-
scripts. The Fisher portion consists of telephone conversa-
tions between strangers, while the Callhome portion contains
telephone conversations between relatives or friends. The
training data size of Fisher/Train is 138,819 sentences, we do
not make use of the much smaller Callhome/Train part of the
corpus. We use Fisher/Dev as held-out testing data for most
of our experiments, which has a WER of 41.3%. The rela-
tively high WER is due to the spontaneous speaking style and
challenging acoustics. It should also be noted that the ASR
model used by [12] is slightly outdated by now and better
WER are achieved with recent advancements [31, 32]. Here,
our main concern is handling of noisy inputs, not achieving
the most competitive end-to-end BLEU scores.

For preprocessing, we tokenized and lowercased source
and target sides. We removed punctuation from the refer-
ence transcripts on the source side for consistency with the
automatic transcripts which also do not contain punctuation.
Although punctuation is removed, we use the manual seg-
mentation as given in the corpus, and leave dealing with
noisy segmentation boundaries to future work. Our source-
side vocabulary contains all words from the automatic tran-
scripts for Fisher/Train, replacing singletons by an unknown
word token, totaling 14,648 words. Similarly, on the tar-
get side we used all words from the reference translations
of Fisher/Train, replacing singletons by the unknown word,
yielding 10,800 words in total.

Our implementation uses the eXtensible Neural Machine
Translation (XNMT) toolkit,3 which is based on DyNet [33].
We use a standard attentional encoder-decoder architecture
with one encoder and decoder layer. The encoder is a bidirec-
tional LSTM with 256 hidden units per direction, the decoder
is an LSTM with 512 hidden units. We used 128-dimensional
word embeddings. We use variational dropout [34] in en-
coder and decoder LSTMs (p=0.5). To obtain a more noise-

2This particular choice of distribution is motivated by our experimental
data containing about 5 times as many substitutions as insertions or dele-
tions.

3github.com/neulab/xnmt
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Figure 1: BLEU scores (4 references) on Fisher/Dev, using
ASR transcripts as inputs, varying the amount of induced
noise.

robust baseline, we also apply word type dropout [34] to the
source word embeddings (p=0.1).

Training was performed with Adam [35]. For all experi-
ments, we first pretrained a model using reference transcripts
only, starting from an initial learning rate of 0.0003, restart-
ing Adam and halving learning rates when perplexities did
not improve for 2 consecutive epochs [36]. We then fine-
tuned the model weights by training on noisy data accord-
ing to the proposed noise model. Fine-tuning used an initial
learning rate of 0.00001 and the same learning rate decay and
restarting strategy as during pre-training. The pretraining-
finetuning scheme was used in part to make experimental
effort manageable, and in part because we observed better
BLEU scores in preliminary experiments.

4.1. Main Results

Figure 1 compares our baseline model against several mod-
els trained using our noise model. VANILLA NOISE in-
duces varying amounts of noise using the basic model and
yields substantial improvements over the BASELINE, which
is trained only on clean data. UNIGRAM NOISE replaces the
uniform sampling distribution with a unigram distribution
and yields similar gains. Perhaps surprisingly, DELETION-
ONLY NOISE, a simplified model that induces only deletions,
produces strong results as well. We present a possible expla-
nation later. Note that improvements are achieved only for
small to moderate amounts of noise. For τ = 0.4, which
is close to the WER of the test data, results are rather poor.
This indicates that we are facing a trade-off between better
trainability for small values for τ , and better distributional
similarity with the test data for higher values for τ . We also
trained a model by fine-tuning on actual 1-best transcripts
rather than using the proposed noise model. Results are
rather poor at 32.55 BLEU points, which may be explained
by the amount of noise being so high that trainability is com-
promised, and possibly by some proneness to overfitting be-
cause the same noise is used in every epoch.

Figure 2 shows performance of the same models when
using clean reference transcripts as inputs. Translation of
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Figure 2: BLEU scores (4 references) on Fisher/Dev, using
clean reference transcripts as inputs, varying the amount of
induced noise.
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Figure 3: ngram precision (BLEU without brevity penalty)
on Fisher/Dev, using ASR transcripts as inputs, varying the
amount of induced noise.

clean inputs is improved for one configuration of inducing
noise, in which case the induced noise can be understood to
act as a general-purpose regularizer.4 However, note that per-
formance drops quickly when increasing the noise parameter
τ , again highlighting both the importance of distributional
similarity between training and test data, and potential train-
ability issues.

Figure 3 evaluates models in terms of n-gram precision,
which we compute identically to the BLEU score but drop
the brevity penalty. Comparing results to Figure 1, we can
clearly observe some interactions that lead to trading off pre-
cision for recall. Most notably, DELETION-ONLY NOISE per-
forms substantially worse than VANILLA NOISE and UNI-
GRAM NOISE when measuring only precision. Closer anal-
ysis showed that models generally tend to produce shorter
outputs the more noise is contained in the inputs. The BLEU
metric’s brevity penalty is known to punish such short out-
puts quite severely. DELETION-ONLY NOISE, on the other
hand, is trained on inputs where words are deleted. In other
words the training-time inputs are shorter than the test-time
inputs, counteracting the tendency to produce shorter outputs
and thereby avoiding a severe brevity penalty. While this
helps BLEU score, arguably producing shorter outputs for

4This explanation is supported by prior work relating data noising to
traditional smoothing methods [18].
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Figure 4: Length ratio of translations when binning test in-
puts according to their WER.

noisier inputs is a desirable behavior that we would expect
also from a human translator, and BLEU may thus not be
sufficient as ground for model selection in our task.

4.2. Impact of ASR Quality

For this experiment, we combined all available test data
(Fisher/Dev, Fisher/Dev2, Fisher/Test, Callhome/Devtest,
Callhome/Evltest), and divided it into bins according to ASR
WER. Figure 4 shows the length ratio of translations pro-
duced for these inputs for two different models. It can be seen
that both BASELINE and UNIGRAM NOISE produce length ra-
tios close to 1.0 for clean inputs. However, when inputs con-
tain even moderate amounts of noise, uncertainty in BASE-
LINE seems to become problematic and outputs quickly be-
come rather short. UNIGRAM NOISE on the other hand ap-
pears to handle noisier inputs much more gracefully, while
also exhibiting a tendency for shorter outputs when inputs
are noisy.

While this demonstrates greater robustness of the noise-
induced model, it also raises the question as to what extent
shorter outputs for noisy inputs are desirable. Arguably, a
human translator may exhibit the same tendency, but further
research is required to answer the question of what behav-
ior is desired by a user: dropping uncertain inputs and thus
erring on the side of better precision, or trying to guess trans-
lations for those inputs anyways and erring on the side of
better recall.5

4.3. Negative Results for Model Refinements

Our analysis so far only considered the unigram-sampling re-
finement of the vanilla noise model. We also tested acoustic

5Consider a typical example we found in an English ASR transcript,
Boesch as ever his son decides to have a feast. While the first 3 or 4 words
are clearly recognition mistakes (caused by a rare name in the audio), the
rest makes sense and a human might choose to only translate the latter part.
Another example is buildings and boundaries around the location very part,
where the last 2 words are easily recognizable as mistakes and could be
dropped before translating. However, an experienced translator might guess
correctly that very part should be replaced by where to park. We suggest
investigation of desirable translation strategies from a usability perspective
for future work.

conditioning (§3.2.2), better sampling positions (§3.2.3), and
more realistic proportion of error types (§3.2.4), but did not
observe noticeable improvements and do not present details
here. Future work may attempt using even more realistic er-
ror patterns along the lines of prior work [14, 15]. How-
ever, a possible difficulty when trying this may be that, un-
like phrase-based machine translation, neural machine trans-
lation has been known to be ineffective at learning from rare
training examples [11]. Permutations of error patterns po-
tentially consist of mainly such hard-to-learn rarely occur-
ring patterns. Counteracting this by increasing the amount
of noise may lead to trainability issues as observed in our
experiments as well. Instead, it may be necessary to repre-
sent knowledge about confusability more explicitly and effi-
ciently in the model.

5. Conclusion
We identified robustness to noisy inputs as a challenge for
neural sequence-to-sequence models, and proposed to intro-
duce randomized noise into the training using a simple gen-
erative noise model. We found that this improves robustness
when properly calibrating type and amount of noise, and that
type and amount of noise at training and test time affect the
length of the outputs. We highlighted the trade-off between
trainability and distributional data similarity, and found that
the amount of induced noise must be much smaller than the
expected noise at test time for good results. Future work may
investigate appropriate trade-offs between precision and re-
call when translating noisy inputs from a user perspective,
use our method for different tasks such as translating user-
generated content, and experiment with more refined types
of noise or other ways of modeling acoustic similarity in the
context of neural machine translation of ASR outputs.
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Abstract
Neural machine translation (NMT) is the state of the art for
machine translation, and it shows the best performance when
there is a considerable amount of data available. When only
little data exist for a language pair, the model cannot produce
good representations for words, particularly for rare words.
One common solution consists in reducing data sparsity by
segmenting words into sub-words, in order to allow rare
words to have shared representations with other words. Tak-
ing a different approach, in this paper we present a method
to feed an NMT network with word embeddings trained on
monolingual data, which are combined with the task-specific
embeddings learned at training time. This method can lever-
age an embedding matrix with a huge number of words,
which can therefore extend the word-level vocabulary. Our
experiments on two language pairs show good results for
the typical low-resourced data scenario (IWSLT in-domain
dataset). Our consistent improvements over the baselines
represent a positive proof about the possibility to leverage
models pre-trained on monolingual data in NMT.

1. Introduction
Neural machine translation [1, 2] has shown to be highly ef-
fective in conditions where there is a good quantity of data
available, but struggles to provide good results in a low-
resource condition. In general, publicly-available parallel
data are small in size, containing at most only few millions
of parallel sentences. Therefore, it becomes important to in-
crease the quantity of data by using monolingual data, which
are always available in a larger quantity.
Improving MT with monolingual data is a long-standing
technique from statistical machine translation (SMT) [3].
In that case, target-side monolingual data are used to train
a better language model for producing more fluent transla-
tions [4], or even to perform domain adaptation [5]. By con-
trast, there are no effective usages of source-side monolin-
gual data.
In NMT, there is only one model trained end to end instead
of several different statistical models that are combined by
means of a log-linear function. The end-to-end approach is
considered to be the strength point of NMT [6], but it also
means that there is no obvious way to use monolingual data.
In fact, the most used approach so far consists in augmenting

the training set with synthetic parallel data. They are usu-
ally back-translations of target monolingual sentences [7],
but also forward-translations of the source side [8] or even
copies of the target language in the source side [9]. In all
the cases, as the synthetic data are mixed with the real data,
the number of synthetic sentence pairs should be kept un-
der control to prevent a degradation of performance. This
strongly limits the size of usable monolingual data. Other ap-
proaches explore different machine learning frameworks for
using monolingual data, such as multi-task learning [10] to
improve the encoder with source-side monolingual data [11],
or reinforcement learning to jointly learn two systems and ex-
ploit monolingual data from both sides [12].
In other NLP tasks, unsupervised learning on large data has
been extensively used for training continuous representation
of words [13, 14] that are used to initialize the embeddings
for the task-specific model, or as an input to it. In NMT, there
are word embeddings for both source and target side, and
they are generally jointly learnt with the rest of the network.
As far as we know, for NMT there are no works reporting
improvements by initializing the embeddings with embed-
dings trained on monolingual data. One of the reasons can be
that pre-training the embeddings together with the RNNs that
combine them [15, 16] was considered a more promising op-
tion. A second reason can be found in the tokens granularity
in NMT, which is usually at a sub-word level in state-of-the-
art systems. By using sub-words, the embeddings should be
recomputed every time a different training set is used. Thus,
while effective in terms of performance, the subword-level
translation precludes the access to additional existing word-
level resources. Moreover, the sub-word tokens are more am-
biguous than their word-level counterparts, and this can lead
to wrong translations that are harder to catch automatically if
compared with “unknown” tokens.
In this work, we propose to modify the NMT architecture to
take as additional input the embeddings computed on mono-
lingual data, which we call external. The external embed-
dings are merged with the internal embeddings learned dur-
ing the NMT training in order to achieve an improved word
representation. A previous work [17] shows that using ex-
ternal embeddings in a high resource setting harms the per-
formance. Thus, we set the experiments in a low-resource
scenario, simulated by taking only in-domain IWSLT [18]
data for TED talks. We experiment our method on En↔Fr

_____________________________________________________________
Proceedings of the 14th International Workshop on Spoken Language Translation

Tokyo, Japan, December 14th-15th, 2017

97



Figure 1: Merging external embeddings with the normal NMT embeddings in the encoder side. The tokens ”The” and ”car” are
used to extract the two kinds of embeddings that are merged before being used as input for the encoder RNN.

and En→De. Our results in all the language directions show
significant improvements over the word-level baseline while
using only out-domain monolingual data, and comparable re-
sults with the BPE baseline that is not limited by the vocab-
ulary size.
The codebase we have used, based on Nematus1 [19] is avail-
able on Github2.

2. Background
Neural machine translation is based on the attention-
based encoder-decoder architecture [2] which jointly learns
the translation and alignment models with a sequence-
to-sequence process. A sequence of source words
f1, f2, . . . , fm is mapped to sequence of embedding vectors
x1,x2, . . . ,xm, via a look-up table X ∈ R|V |×d, where |V |
is the vocabulary size and d is the dimensionality of the em-
bedding vectors. Hence, the memory occupied by the vocab-
ulary is linear in both the vocabulary size and the embeddings
size.
The embedding sequence is then processed by a bi-
directional RNN [20]:

−→
h j = g(xj ,

−→
h j−1), j = 1, ..m

←−
h j = g(xj ,

←−
h j+1), j = m, .., 1

where g is the LSTM [21] or the GRU [22] function, and the
outputs from the two directions are then concatenated. The
sequence of vectors produced by the bidirectional RNN is the
encoded representation of the source sentence.
The decoder takes as input the encoder outputs (or states)
and produces a sequence of target words e1, e2, . . . , el. The
decoder works by progressively predicting the probability of
the next target word ei given the previously generated target
words and the source context vector ci. At each step, the
decoder extracts the word embedding yi−1 of the previous
target word, applies one recurrent layer to it, and the out-
put from this layer is used to compute the attention over the
source tokens. Finally, the hidden state from the recurrent
layers, from the attention output and the word embeddings

1https://github.com/EdinburghNLP/nematus
2https://github.com/mattiadg/NMT-external-embeddings

are combined and then used for computing the normalized
probabilities over the target words with a softmax. The re-
current layer produces an hidden state si

si = g(yi−1, si−1, ci)

where, g can be computed with one or more LSTM or GRU
layers. The output of the RNN is then used by the attention
model to weigh the source vectors according to their similar-
ity with it, which is computed as:

αij =
exp(score(̃si,hj))∑m
k=1 exp(score(̃si,hk))

Where s̃i = GRU(yi−1, si−1) is a partial computation of
the hidden state whose aim is to compute the attention. After
this step, the weights are used to compute a weighted average
of the encoder outputs, which represents the source context:

ci =

m∑
j=1

αijhj

The source context vector is then combined with the output
of the last RNN layer in a new vector oi that is passed as
input to the softmax layer to compute the probability for each
word in the vocabulary to be the next word, such that:

p(ei = k | ei−1, ci) ∝ exp(o>i Vk)

where Vk is the k− th column of the matrix V, which holds
the same size of the target-side embedding matrix, and oi is
a function of si and ci. Let Θ be the set of all the network
parameters, then the objective of the training is to find pa-
rameter values maximizing the likelihood of the training set
S, i.e.:

Θ∗ = argminΘ

∑
(f ,e)∈S

|e|∑
i=1

log p(ei|e<i,x; Θ)

Hence, the network adapts all the parameters together to op-
timize the loss function.
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EnFr FrEn EnDe
Model tst2013 tst2014 tst2013 tst2014 tst2013 tst2014
Baseline word-level 31.41 28.26 31.30 29.09 16.51 13.33
Baseline tgt-BPE / / / / 21.72 18.11
Mix Sum 33.00 29.96 32.50 30.40 22.40 18.55
Mix Gate 32.23 29.44 32.76 29.86 21.64 18.54
Mix Ctrl 32.77 30.10 32.98 30.77 22.33 19.13
BPE 33.37 31.01 34.09 30.81 22.28 18.72
Mix Ctrl Bi 33.75 30.38 33.27 30.65 18.17 15.36
Mix Ctrl Bi BPE 33.58 30.98 32.66 30.72 21.79 18.42

Table 1: Results in terms of BLEU scores for all the language directions. In half of the cases, using subwords is still the best
approach. Adding external embeddings in the target side is usually not helpful. The improvements over the word-level baseline
are always clear.

3. Related works

The most widespread approach for improving NMT with
monolingual data is the use of back-translations for augment-
ing the training set [7]. Although being used in the state
of the art, this approach has limitations in a low-resource
scenario for two reasons. The first reason is the need for a
good system in the opposite translation direction, which is
also low-resources, and the translations quality affects per-
formance of the method [23]. The second reason is the sen-
sitiveness to data of this approach, which makes impossible
the use of large quantities of monolingual data.
Zoph et al. [15] investigated the transfer learning from a
high-resource language pair (parent) to low-resource lan-
guage pairs for MT (target), leading to consistent improve-
ments on the target language pairs. This approach, though
computationally expensive if the parent system is not already
available, is simple but it also does not have any effect out-
side a low-resource scenario.
Gulcehre et al. [24] were the first who tried to use monolin-
gual data in NMT, by integrating a language model (LM) into
the MT model. The model uses only the LM output for the
integration, thus monolingual data have no effect in improv-
ing the word representations.
Domhan and Hieber [25] proposed to add another recurrent
layer without dependencies on the source sentence to the de-
coder, in order to use target-side monolingual data via multi-
task training. Again, the multi-task learning does not affect
all the parameters of the network, thus the improvements are
limited. In fact, the authors show that back-translations still
perform better than their method. Ramachandran et al. [16]
propose to pre-train encoder and decoder as two separate
language models, hence using monolingual data from both
sides. They show that with monolingual data it is possible to
improve representations beyond the embeddings, and to im-
prove over back-translations. Our work differs from theirs as
we are focusing only on the contribution given by the embed-
dings, and we use them as an additional input to the network,
instead of pre-training it.

4. Using external word embeddings
The method we propose uses word embeddings trained on
monolingual data to enrich the representation of words in the
case of a low-resource scenario.
Each word in a sentence is used to index a word vector in the
NMT word embedding matrices and a word vector from an
external matrix trained on monolingual data. From now on,
we will refer to the first kind of embeddings as internal and
to the second as external. The internal and external vectors
for each word are then merged into a final vector that will be
used as input for the following layer. As this method can be
applied to both source and target side, the following layer is
the GRU both in the encoder and in the decoder. Our method
changes the word representations before any other compu-
tation on words is performed, thus it could also be used in
principle with different sequence-to-sequence architectures.
The external embeddings are learned for a task that is not
machine translation, hence we introduce a fully-connected
nonlinear layer that allows the network to learn how to map
the embeddings into a new space, hopefully more useful for
the translation task:

x̃j = tanh(x̄>j W + b) for j = 1, . . . ,m

The data flow from words to RNN is illustrated in Figure 1.
In this work we investigated three different merge functions
with an increasing number of parameters: (1) mix sum, (2)
mix controller, (3) and mix gate, which can be used either
only in the source side or also in the target side.
In the rest of this section we describe the merge functions we
have investigated for combining internal and external embed-
dings.

4.1. Mix sum

The mix sum follows the assumption that the internal and
external embeddings have the same importance in the word
representation, and the network can learn to obtain comple-
mentary information from the two. Consequently, we add a
simple element-wise sum between the internal and the exter-
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Figure 2: External embeddings in the decoder. As for the
internal embeddings, during training the ground-truth word
is used, while at translation time it uses the previously trans-
lated word. This limits the possibility to use the extended
vocabulary of the external embeddings.

nal mapped embedding:

x̂j = xj + x̃j

Despite its simplicity, our experiments show that in several
cases this function performs comparably to the best function.

4.2. Mix controller

The mix controller relaxes the assumption of the same im-
portance for the two embeddings. It is inspired by the con-
troller function introduced in [24], and allows us to give a
scalar weight to the external embeddings while giving always
a weight of 1 to the internal ones. In fact, in our preliminary
experiments we obtained some negative results using the ex-
ternal embeddings with large training data, suggesting that in
that case the embeddings are better learned from the transla-
tion task only.
The first step consists in computing the weight for the exter-
nal embedding in the range [0, 1], as a function of the embed-
ding itself:

wext = σ(x̃>wctrl + bctrl)

after the weight has been computed, the two vectors are sim-
ply summed:

x̂j = xj + wextx̃j

The controller function is jointly learned with the rest of
the network.

4.3. Mix gate

With mix gate we want to give the network a finer-grained
control over the merging function with respect to the con-
troller. A gate is a vector that modifies the flow of the data

by giving weights to each vector component. The gate is
computed as a function of a branch of the data flow, which
may or may not coincide with the vector to which it is fi-
nally applied. All the elements of the gate are in the range
[0, 1], and it is applied by element-wise multiplication. Some
widely used gated functions are LSTM [21] and GRU [22],
but in this work we are inspired by the context gate [26]. The
context gate is computed as a function of two inputs and then
it is applied to both of them for computing an element-wise
weighted average of the two vectors. We apply the gate to
the internal and external embeddings:

zj = σ([xj ; x̃j ]
>Wz + bz)

where zj is the output of the gate and σ is the sigmoid func-
tion. The new vector is produced by combining linear trans-
formations of the inputs with the gate zj :

x̂j = tanh(zj � ff1(xj) + (1− zj)� ff2(x̃j))

Where ff is a fully-connected layer. In this setting the net-
work has more parameters to learn for combining the internal
and external embeddings in an effective way.

4.4. External embeddings in the target side

In the target side, we investigate the effectiveness of a
straightforward extension of the method. At each time step,
we merge the external and internal embeddings for the pre-
vious word with the same function used in the encoder. But,
the softmax can generate only words that are in the internal
vocabulary. We have chosen not to use the external vocabu-
lary both for speed reason, as a softmax over a big vocabulary
is really expensive, but also to give a priority to the internal
embeddings that we consider more relevant for the transla-
tion task. But, the main limitation of this approach resides in
the difference between training and generation. In fact, dur-
ing training we know all the target words in advance, and the
OOV words that are present in a sentence can still use their
“external” representation, if it exists. Hence, during training
it is similar to what happens in the source side. By contrast,
during the generation phase, when the system produces an
unknown token, this will be passed to the next time step and
the embeddings for “unknown” will be retrieved from both
internal and external matrices.
We are interested in verifying whether the additional infor-
mation during training, which can modify the unknown token
representation in a meaningful way, results in a less frequent
generation of unknown tokens, and better sentences in gen-
eral, during the translation phase [27].

5. Experiments
We have evaluated our method on the IWSLT 2016 [28]
datasets for English↔French and English→German. For all
the experiments we used an attention-based encoder-decoder
with Nematus [19] as a codebase. The encoder is a single-
layer bidirectional GRU [20] while the decoder is the con-
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Figure 3: Learning curves on En→De. Without external em-
beddings the improvement is faster at the beginning, but then
it reaches a lower plateau. For readability reasons we in-
serted only the word-level baseline and the best performing
systems with external embeddings.

ditional GRU. We have used embeddings of dimension 500,
RNNs with 500 units and GRU [22] activation. As an opti-
mizer we have used Adam [29] with learning rate 0.0003. A
dropout of 0.1 is applied to the word indexes and 0.2 to the
embedding and hidden vectors.
For the monolingual embeddings, we have used in English
the Gigacrawl embeddings available in the GloVe website3

which has a vocabulary of 1.9M words and has been trained
on 42B tokens. The French and German monolingual em-
beddings have been computed using fastText [30] on mono-
lingual data, training for 5 epochs with context windows of
size 10 and hierarchical softmax as a loss function. For
French, we used the publicly-available Gigaword dataset that
consists of 2.5B tokens, and a vocabulary of 900K words.
For German, we used the monolingual newscrawl from 2007
to 2017, for a total of 5B tokens and a vocabulary of about
4.7M words.
The experiments run on En↔Fr and En→De are different
among them and are aimed at showing different properties
of this method. In fact, with En↔Fr we want to investi-
gate mainly the effectiveness of our approach at a word level,
while with En→De we move to a combined approach with
BPEs because of the higher inflection of German.
The experimental results are listed in Table 1. For all the lan-
guage directions we have run a word-level baseline (Baseline
word-level) and a BPE baseline (BPE). Then, we have ex-
perimental runs using the three merging methods only in the
source side. As the mix-ctrl shows better results in general,
we have run experiments using this merging method both in
source and target sides (Mix Ctrl Bi), and also adding BPE
embeddings in German and French (Mix Ctrl Bi BPE). We do
not report results by initializing the NMT word embeddings
with the external embeddings because we do not observe any
significant variation with respect to the word-level baseline.

3https://nlp.stanford.edu/projects/glove/

All the translations are evaluated on the de-tokenized and
cased output, using the multi-bleu.perl script available in the
Moses toolkit [31].

5.1. IWSLT En↔Fr

Our first group of experiments was run on the En↔Fr lan-
guage pair and is aimed at verifying the improvement given
by the external embeddings in a word-level setting.
For both language directions we have trained a word-level
baseline using 80K words in source and 40K in target for
En→Fr and 40K per language in the opposite direction. In
this task we have about 210K in-domain (TED talks) parallel
sentences.
We compare our systems with a word-level baseline and a
BPE baseline. In the En→Fr direction, listed in the first two
columns of Table 1 the mix controller and sum are quite com-
parable, while the gate is clearly worse. Comparing with the
word-level baseline we get improvements up to +1.8 BLEU
points with mix ctrl in tst2014. Adding the external embed-
dings to the decoder improves by another BLEU point for
test2013 but the improvement is negligible for 2014, while
by using target external embeddings and BPEs in French the
improvement is of 0.8 BLEU points in both test sets. This
last method produces results comparable with the BPE base-
line.
In the Fr→En direction, listed in the two following columns
of Table 1, the improvement obtained by the source-side ex-
ternal embeddings is up to +1.7 BLEU scores with mix ctrl,
but adding them in the target side does not provide any sig-
nificant improvement. For this direction, the BPE system is
always the best performing, but in tst2014 is comparable with
all the versions of mix-ctrl.

EnDe EnFr FrEn
Type 2013 2014 2013 2014 2013 2014
Internal 290 391 254 430 538 583
External 147 206 163 275 2715 3300
Both 34 34 57 131 194 200

Table 2: Unknown words in the source side. The external
embeddings helps to reduce the unknown words but their
number is low from the beginning.

5.2. IWSLT En→De

In En→De the training set consists of about 190K parallel
sentences. For the increased difficulty of the target language,
we introduce the BPE segmentation in the target side. We
run a word-level baseline with a vocabulary of 40K words
per side. The first comparison is with another baseline which
uses BPE-segmented words on the target side. Then, we run
the three experiments with the external embeddings, and fi-
nally a stronger system that uses subwords in both sides. We
consider 16K merge BPE rules. The baseline using target-
side BPEs is from +4.5 to +6 BLEU points stronger than
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Table 3: Unknown words generated by different systems.
EnDe EnFr FrEn

Type 2013 2014 2013 2014 2013 2014
Word bl 3402 4885 281 301 395 393
Mix ctrl 0 0 449 514 431 463
Mix ctrl bi 2522 3484 466 537 422 445

the word-level baseline (last two columns of Table 1), and
adding the external embeddings in the source improves by
further +0.5 to +1 BLEU points. These results are compa-
rable with the ones obtained using BPE segmentation in both
source and target side, and our mix-ctrl system obtains the
best result in tst2014.
Using external embeddings in the target side together with
BPEs produces a deterioration of performance with respect
to the mix-ctrl system. If we combine this result with the low
number of BPE merging rules (16K), we may suppose that is
not possible to learn good embeddings for small sub-words
from large monolingual data because of the high ambiguity
of each token. But, this hypothesis needs further investiga-
tion.

6. Analysis

In this section, we show some phenomena occurring during
training and translation with our methods, in order to better
understand their impact. In fact, the experiments provided us
with results that are definitely stronger than the word-level
baseline, but the comparison with BPE needs further investi-
gation.

6.1. Learning curves

A comparison of the learning curves (Fig. 3) shows a big ini-
tial advantage for the baseline. The mix controller arrives to
similar validation scores only at epoch 10. The mix sum and
mix gate systems (not shown) are even slower than mix con-
troller.
Despite the better starting of the word-level baseline, it
reaches a plateau faster than the other systems and to a lower
score. The curves in Fig. 3 have been computed for En→De,
but a similar trend is observed for the other directions, too.
It is interesting to notice how the small score difference in
the validation (Fig. 3) becomes much larger in test (Table 1),
although the test is performed in a slightly different setting.
After 5 epochs, the mix-ctrl system is not able to produce an
intelligible translation, while the word-level system reached
the 70% of its quality after the same number of samples. This
suggests that the external embeddings are difficult to work
with, and we suppose that our merging method, consisting
of one single mapper for all the vectors, contributes to slow
down the training process.

6.2. Impact of unknown words

In Table 2 we have summarized the number of out-of-
vocabulary (OOV) words in the source side. For each test
set, we show their number for the internal and external vo-
cabularies, and the number of words that are unknown to
both. Although the external vocabulary size is much big-
ger, as the external embeddings are trained on out-domain
data the number of unknown words is higher than in the in-
ternal vocabulary. As expected, when the source language is
English the number of OOVs is quite small in both vocabu-
laries, but when we use French, it becomes really high in the
external vocabulary. This can explain the reduced improve-
ment obtained by the system using our method in Fr→En,
where the improvement over the baseline is always less than
+2 BLEU points.
Now, we focus on the unknown words generated during
translations, for which we expected a reduction due to the
improved representation. Surprisingly, as it is listed in Ta-
ble 3, we get more unknown words with our method when
we use external embeddings in the source than with the word-
level baseline. On the other hand, the contribution of adding
them in the target side seems to be language dependent. In
fact, it slightly increases in En→Fr and slightly decreases in
Fr→En.
In EN→DE, the number of generated UNK tokens is ex-
tremely high, and this is the main reason why adding BPEs
in the target side greatly increases the BLEU score.
The reported results are computed with the output files con-
taining the “UNK” tokens, but by removing them we get a
negligible BLEU score variation. By looking at translation
examples (Table 4) we can notice that our approach gener-
ates “UNK” when the word-level generates words that are
similar to the target, but wrong. This can be combined with
the clearer alignment produced by using words instead of
sub-words in order to effectively replace these tokens with
an effective translation.

6.3. Example Translations

In Table 4 we present some examples of translations to un-
derstand what actually happens in our model. In most of
the sentences we have read, the translations were basically
one the rephrasing of the others, thus the BLEU scores often
depend on the number of reference words chosen by the sys-
tems, even if the paraphrasing would produce a good trans-
lation. Sometimes there are significant differences between
the systems, as we can see in the examples.
In the first example, the word-level baseline did not trans-
late ”are hearing”, which is translated instead by all the other
systems, but with a different tense with respect to the ref-
erence. Going from mix-ctrl to mix-ctrl-bi, we notice that
“de la vingtaine” disappears, thus there is no reference to the
“twentysomethings”. In this case the BPE system performs
worse, maybe because of a wrong segmentation that makes
it translate something that is not in the source.
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Table 4: Examples of translations
src but this isn ’t what twentysomethings are hearing .
ref mais ce n’ est pas ce que les jeunes adultes entendent .

word-level mais ce n’ est pas ce que les jeunes de la vingtaine .
mix-ctrl mais ce n’ est pas ce que les jeunes de la vingtaine sont en train d’ entendre .

mix-ctrl Bi mais ce n’ est pas ce que les jeunes sont en train d’ entendre .
BPE mais ce n’ est pas ce que les gens de twitymer sont en train d’ entendre .

src [...] but if we remove this boundary , the only boundary left is our imagination .
ref [...] mais si on supprime cette limite , la seule qu’ il nous reste est notre imagination .

word-level [...] mais si nous supprimons cette frontière , la seule frontière à gauche est notre imagination .
mix-ctrl [...] mais si nous retirons ces limites , la seule frontière gauche est notre imagination .

mix-ctrl Bi [...] mais si nous retirons cette frontière , la seule frontière est devenue notre imagination .
BPE [...] mais si nous enlevons cette frontière , la seule frontière reste est notre imagination .

src Egyptologists have always known the site of Itjtawy was located somewhere near the pyramids of the two kings [...] .
ref les égyptologues avaient toujours présumé qu’ Itjtawy se trouvait quelque part entre les pyramides des deux rois [...] .

word-level Nous avons toujours connu le site de Londres , situé quelque part prés des pyramides des deux rois [...]
mix-ctrl les UNK ont toujours connu le site de la UNK était situé quelque part près des pyramides des deux rois [...].

mix-ctrl Bi UNK a toujours connu le site de la UNK se situait vers les pyramides des deux rois [...]
BPE les Egyptologistes ont toujours connu le site de Itjtawy a été situé quelque part près des pyramides des deux rois [...]

In the second example, the baseline chose the wrong mean-
ing of “left”, and the same error is kept by mix-ctrl that also
changes “cette limite” to “ces limites”, transforming it into
a plural. Mix-ctrl-bi does not have the problem of the plural
and adds “est devenue”, which is not a translation of “left”,
but produces a nice paraphrasing. The BPE system instead
uses a wrong verb tense that results in a non-fluent phrase.
In the third example, we have two words unseen during train-
ing, one is “Egyptologists”, the other is “Itjtawy”. Here, the
baseline translate the site of “Itjtawy” with “Londres”, the
French name for London, while our approaches choose the
“UNK” token. The BPE system, instead, is capable to trans-
late it correctly. For what concerns “Egyptologists”, the mix-
ctrl system produces the article for the correct person fol-
lowed by UNK, while the other two word-level approaches
chose the wrong person. Compared with the baseline, the
mix-ctrl has “Egyptologists” in its source external vocabu-
lary. The BPE system produces an almost perfect translation
for that word (the correct form would be “Égyptologistes”),
even though it is not the one present in the reference. How-
ever, all the systems fail in producing a fluent translation for
the whole sentence.
These examples show that the external embeddings can add
meaning to the internal word vectors, but there seem to be
some nasty interferences among very close word vectors that
can lead to wrong translations.

7. Conclusions

We have presented a method for leveraging embeddings
trained with an external monolingual tool into NMT. Our
method produces consistent improvements over a word-level
baseline, and has similar performance with a BPE system,
while keeping translation at word-level.

The experimental results show that this approach, though
limited, can open the way to a new approach for leverag-
ing monolingual data into NMT, but it needs to go beyond
the training of only the embeddings. As a future work we
want to explore methods for pre-training larger models with
monolingual data and integrate them in NMT for improving
the word representations while overcoming the limitations
we have highlighted.
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[22] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Ben-
gio, “On the properties of neural machine transla-
tion: Encoder-decoder approaches,” in Proc. of SSST-8,
2014.

[23] M. A. Di Gangi, N. Bertoldi, and M. Federico, “FBK’s
participation to the English-to-German News Transla-
tion Task of WMT 2017,” in Proc. of WMT17, 2017,
pp. 271–275.

[24] C. Gulcehre, O. Firat, K. Xu, K. Cho, L. Barrault, H.-
C. Lin, F. Bougares, H. Schwenk, and Y. Bengio, “On
using monolingual corpora in neural machine transla-
tion,” arXiv preprint arXiv:1503.03535, 2015.

[25] T. Domhan and F. Hieber, “Using target-side monolin-
gual data for neural machine translation through multi-
task learning,” in Proc. of EMNLP, 2017, pp. 1501–
1506.

[26] Z. Tu, Y. Liu, Z. Lu, X. Liu, and H. Li, “Context gates
for neural machine translation,” Transactions of the As-
sociation for Computational Linguistics, vol. 5, pp. 87–
99, 2017.

[27] X. Li, J. Zhang, and C. Zong, “Towards zero unknown
word in neural machine translation,” in Proceedings of
IJCAI, 2016, pp. 2852–2858.

[28] M. Cettolo, J. Niehues, S. Stker, L. Bentivogli, and
M. Federico, “The IWSLT 2016 evaluation campaign,”
in Proc. of IWSLT 2016, Seattle, pp. 14, WA, 2016.

[29] D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in Proc. of ICLR, 2015.

[30] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov,
“Enriching word vectors with subword information,”
Transactions of the Association for Computational Lin-
guistics, pp. 135–146, 2017.

[31] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, et al., “Moses: Open source toolkit
for statistical machine translation,” in Proc. of ACL on
interactive poster and demonstration sessions. Asso-
ciation for Computational Linguistics, 2007, pp. 177–
180.

_____________________________________________________________
Proceedings of the 14th International Workshop on Spoken Language Translation

Tokyo, Japan, December 14th-15th, 2017

104



Effective Strategies in Zero-Shot Neural Machine Translation

Thanh-Le Ha, Jan Niehues, Alexander Waibel

Institute for Anthropomatics and Robotics
KIT - Karlsruhe Institute of Technology, Germany

firstname.lastname@kit.edu

Abstract
In this paper, we proposed two strategies which can be ap-
plied to a multilingual neural machine translation system in
order to better tackle zero-shot scenarios despite not having
any parallel corpus. The experiments show that they are
effective in terms of both performance and computing re-
sources, especially in multilingual translation of unbalanced
data in real zero-resourced condition when they alleviate the
language bias problem.

1. Introduction
The newly proposed neural machine translation [1] has
shown the best performance in recent machine translation
campaigns for several language pair. Being applied to mul-
tilingual settings, neural machine translation (NMT) systems
have been proved to be benefited from additional information
embedded in a common semantic space across languages.
However, in the extreme cases where no parallel data is
available to train such system, often NMT systems suffer a
bad training situation and are incapable to perform adequate
translation.

In this work, we point out the underlying problem of
current multilingual NMT systems when dealing with zero-
resource scenarios. Then we propose two simple strategies
to reduce adverse impact of the problem. The strategies
need little modifications in the standard NMT framework, yet
they are still able to achieve better performance on zero-shot
translation tasks with much less training time.

1.1. Neural Machine Translation

In this section, we briefly describe the framework of Neu-
ral Machine Translation as a sequence-to-sequence modeling
problem following the proposed method of [1].

Given a source sentence x = (x1, .., xi, .., xI) and the
corresponding target sentence y = (y1, .., yj , .., yJ), the
NMT aims to directly model the translation probability of
the target sequence:

P (y|x) =
I∏

j=1

P (yj |y<j ,x;θ)

[1] proposed an encoder-attention-decoder framework to
calculate this probability.

A bidirectional recurrent encoder reads a word xi from
the source sentence and produces a representation of the sen-
tence in a fixed-length vector hi concatenated from those of
the forward and backward directions:

hi = [
−→
h i,
←−
h i]

−→
h i = d(

−→
h i−1,Es • xi) (1)

←−
h i = d(

←−
h i+1,Es • xi) (2)

where Es is the source word embedding matrix to be
shared across the source words xi ∈ Vx, d is the recurrent
unit computing the current hidden state of the encoder based
on the previous hidden state. hi is then called an annotation
vector which encodes the source sentence up to the time i
from both forward and backward directions.

Then an attention mechanism is set up in order to choose
which annotation vectors should contribute to the predicting
decision of the next target word. Normally, a relevance score
rel(zj−1,hi) between the previous target word and the an-
notation vectors is used to calculate the context vector ci:

αij =
exp(rel(zj−1,hi))∑
i′ exp(rel(zj−1,hi′))

, cj =
∑
i

αijhi

In the other end, a decoder recursively generates one tar-
get word yj at a time:

P (yj |y<j ,x;θ) =
exp (zj)∑|Vy|
k=1 exp (zk)

Where:

zj = g(zj−1, tj−1, cj)

tj−1 = Et • yj−1 (3)

The mechanism in the decoder is similar to its counter-
part in the encoder, excepts that beside the previous hidden
state zj−1 and target embedding tj−1, it also takes the con-
text vector cj from the attention layer as inputs to calculate
the current hidden state zj . The predicted word yj at time j
then can be sampled from a softmax distribution of the hid-
den state. Basically, a beam search is utilized to generate the
output sequence - the translated sentence in this case.
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Original corpus
Source Sentence 1 De versetzen Sie sich mal in meine Lage !
Target Sentence 1 En put yourselves in my position .
Source Sentence 2 En I flew on Air Force Two for eight years .
Target Sentence 2 Nl ik heb acht jaar lang met de Air Force Two gevlogen .

Preprocessed by [2]
Source Sentence 1 De <en> <en> de_versetzen de_Sie de_sich de_mal de_in de_meine de_Lage de_! <en> <en>
Target Sentence 1 En en__ en_put en_yourselves en_in en_my en_position en_.
Source Sentence 2 En <nl> <nl> en_I en_flew en_on en_Air en_Force en_Two en_for en_eight en_years en_. <nl> <nl>
Target Sentence 2 Nl nl__ nl_ik nl_heb nl_acht nl_jaar nl_lang nl_met nl_de nl_Air nl_Force nl_Two nl_gevlogen nl_.

Preprocessed by [3]
Source Sentence 1 De 2en versetzen Sie sich mal in meine Lage !
Target Sentence 1 En put yourselves in my position .
Source Sentence 2 En 2nl I flew on Air Force Two for eight years .
Target Sentence 2 Nl ik heb acht jaar lang met de Air Force Two gevlogen .

Table 1: Examples of preprocessing steps conducted by [2] and [3].

1.2. Multilingual NMT

State-of-the-art NMT systems have demonstrated that ma-
chine translation in many languages can achieve high qual-
ity results with large-scale data and sufficient computational
power[4, 5]. On the other hand, how to prepare such enor-
mous corpora for low-resourced languages and specific do-
mains has remained a big problem. Especially in zero-
resourced condition where we do not possess any bilingual
corpus, building a data-driven translation system requires
special techniques that can enable some sort of transfer learn-
ing. A simple but effective approach called pivot-based ma-
chine translation has been developed. The idea of the pivot-
based approach is to indirectly learn the translation of the
source and target languages through a bridge language. How-
ever, this pivot approach is not ideal since it is necessary
to build two different translation systems for each language
pair in order to perform the bridge translation, hence pos-
sibly produces more ambiguities cross languages as well as
error-prone to the individual systems.

Recent work has started exploring potential solutions to
perform machine translation for multiple language pairs us-
ing a single NMT system. One of the most notable differ-
ences of NMT compared to the conventional statistical ap-
proach is that the source words can be represented in a con-
tinuous space in which the semantic regularities are induced
automatically. Being applied to multilingual settings, NMT
systems have been proved to be benefited from additional in-
formation embedded in a common semantic space across lan-
guages, thus, by some means they are able to conduct some
level of transfer learning.

In this section, we review the related work on construct-
ing a multilingual NMT system involved in translating from
several source languages to several target languages. Then
we consider a potential application of such a multilingual

system on zero-shot scenarios to demonstrate the capability
of those systems in extreme low-resourced conditions.

We can essentially divided the work into two directions
in applying the current NMT framework for multilingual sce-
narios. The first direction follows the idea that multilin-
gual training of an NMT system can be seen as a special
form of multi-task learning where each encoder is respon-
sible to learn an individual modality’s representation and
each decoder’s mission is to predict labels of a particular
task. In such a multilingual system, each task or modal-
ity corresponds to a language. In [6], the authors utilizes a
multiple encoder-decoder architecture to do multi-task learn-
ing, including many-to-many translation, parsing and image
captioning. [7] proposed another approach which enable
attention-based NMT to multilingual translation. Similar to
[6], they use one encoder per source language and one de-
coder per target language for many-to-many translation tasks.
Instead of a quadratic number of independent attention lay-
ers, however, their NMT system contains only a single, huge
attention layer. In order to achieve this, the attention layer
need to be provided some sort of aggregation layer between
it and the encoders as well as the decoders. It is required
to change their architecture to accommodate such a compli-
cated shared attention mechanism.

The work along the second direction also considers mul-
tilingual translation as multi-task learning, although the tasks
should be the same (i.e. translation) with the same modality
(i.e. textual data). The only difference here is whether we de-
cide which components are shared across languages or we let
the architecture learns to share what. In [8], the authors de-
veloped a general framework to analyze which components
should be shared in order to achieve the best multilingual
translation system. Other works chose to share every com-
ponents by grouping all language vocabularies into a large
vocabulary, then use a single encoder-decoder NMT system
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Figure 1: Effect of target dictionary filtering on the decoding process using beam search.

to perform many-to-many translation as each word is viewed
as a distinct entry in the large vocabulary regardless of its lan-
guage. By implementing such mechanism in the preprocess-
ing step, those approaches require little or no modification in
the standard NMT architecture. In our previous work[2], we
performed a two-step preprocessing:

1. Language Coding: Add the language codes to every
word in source and target sentences.

2. Target Forcing: Add a special token in the beginning
of every source sentence indicating the language they
want the system to translate the source sentence to.1

Concurrently, [3] proposed a similar but simpler approach:
they carried out only the second step as in the work of [2].
They expected that there would be only a few cases where
two words in difference languages (with different meanings)
having the same surface form. Thus, they did not conduct the
first step. An interesting side-effect of not doing language-
code adding, as [3] suggested, is that their system could
accomplish code-switching multilingual translation, i.e. it
could translate a sentence containing words in different lan-
guages. The main drawback of these approaches is that the
sizes of the vocabularies and corpus grow proportionally to
the number of languages involved. Hence, a huge amount of

1In fact, we add the target language token both to the beginning and to
the end of every source sentence, each place two times, to make the forcing
effect stronger. Furthermore, every target sentence starts with a pseudo word
playing the role of a start token in a specific target language. This pseudo
word is later removed along with sub-word tags in post-processing steps.

time and memory are necessary to train such a multilingual
system. Table 1 gives us a simple example illustrating those
preprocessing steps.

2. Multilingual-based Zero-Shot Translation
In this section, we follow the second direction of [2] and [3],
hereby called mix-language approaches. First we built some
baselines inspired of their approaches and participated in the
new challenge of zero-shot translation at IWSLT 2017. Then
we proposed two strategies, filtered dictionary and language
as a word feature, in attempts to tackle the drawbacks of their
approaches. The results in section 3.3 show that our strate-
gies are highly effective in terms of both performance and
training resources.

2.1. Target Dictionary Filtering

In [2], the authors discussed about observations of the lan-
guage bias problem in our multilingual system: If the very
first word is wrongly translated into wrong language, the fol-
lowing picked words are more probable in that wrong lan-
guage again. The problem is more severe when the mixed
target vocabulary is unbalanced, due to the language unbal-
ance of the training corpora (whereas the zero-shot is a typi-
cal example). We reported a number of 9.7% of the sentences
wrongly translated in our basic zero-shot German→French
system.

One solution for this problem is to enhance the balance
of the corpus by adding target→target corpora into the mul-
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tilingual system as suggested in [2]. The beam search still
need to consider, however, other candidates belonging to the
target vocabulary that should not be considered. In this work,
we propose a simple yet effective technique to eliminate this
bad effect. In the translation process to a specific language,
we filter out all the entries in the languages other than that
desired language from the target vocabulary. It would sig-
nificantly reduce the translation time in huge multilingual
systems or big texts to be translated due to the fact that
many search paths containing the unwanted candidates are
removed. More importantly, it assures the translated words
and sentences are in the correct language. The effect of this
strategy in the decoding process is illustrated in Figure 1.

2.2. Language as a Word Feature

As briefly mentioned in Section 1.2, the main disadvantage
of the mix-language approaches is the efficiency of training
process. Usually in those systems, source and target vocab-
ularies have a huge number of entries, in proportion to the
number of languages whose corpora are mixed. It leads to
immerse numbers of parameters laying between the embed-
ding and hidden states of the encoder and the decoder. More
problematic is the size of the output softmax - where most
calculations take place.

There exist works on integrating linguistic informa-
tion into NMT systems in order to help predict the output
words[9, 10, 11]. In those works, the information of a word
(e.g. its lemma or its part-of-speech tag) are integrated as a
word features. It is conducted simply by learning the fea-
ture embeddings instead of the word embeddings. In other
words, their system considers a word as a special feature to-
gether with other features of itself.

More specially, in the formula 1, 2 and 3, the embedding
matrices are the concatenation of all features’ embeddings:

E • x =
[
,
]

f∈F

(Ef • xf )

Where
[
,
]

is the vector concatenation operation, concatenat-
ing the embeddings of individual feature f in a finite, arbi-
trary set F of word features. The target features of each tar-
get word would be jointly predicted along the word. Figure 2
denotes this modified architecture.

Inspired by their work, we attempt to encode the lan-
guage information directly in the architecture instead of per-
forming language token attachment in the preprocessing step.
Being applied in our model, instead of the linguistic informa-
tion at the word level, our source word features are the lan-
guage of the considering word and the correct language the
target sentence The only target feature is the language of the
produced word by the system. For example, when we would
like to translate from the sentence “put yourselves in my posi-
tion” into German, the features of each source word would be
the word itself, e.g. “yourselves”, and two additional features
“en” and “de”. Similarly, the features of the target words are

Figure 2: The NMT architecture which allows the integra-
tion of linguistic information as word features.

the word and “de”. This scheme of using language informa-
tion looks alike to [2], but the difference is the way the lan-
guage information are integrated into the NMT framework.
In [2], those information are implicitly injected into the sys-
tem. In this work, they are explicitly provided along with
the corresponding words. Furthermore, when being used
together in the embedding layers, they can share useful in-
formation and constraints which would be more helpful in
choosing both correct words and language to be translated to.
During decoding, the beam search is only conducted on the
target words space and not on the target features. When the
search is complete, the corresponding features are selected
along the search path. In our case, we do not need the output
of the target language features excepts for the evaluation of
language identification purpose.

3. Evaluation
In this section, we describe a thorough evaluation of the re-
lated methods in comparisons with the direct approach as
well as the pivot-based approach.

3.1. Experimental Settings

We participated to this year’s IWSLT zero-shot tasks for
German→Dutch and German→Romanian[12]. The pivot
language used in our experiments is English and the parallel
corpora are German-English and English-Dutch or German-
English and English-Romanian. The data are extracted from
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System Zero-shot? German→Dutch German→Romanian
dev2010 tst2010 dev2010 tst2010

(1) Direct No 17.83 20.49 12.41 15.14
(2) Pivot (via English) Yes 16.11 19.12 12.88 15.04
(3) Zero 2L [3] Yes 4.79 5.75 1.55 2.05
(4) Zero 4L [3] Yes 6.31 7.93 3.15 3.73
(5) Zero 6L [2] Yes 11.58 14.95 8.61 10.83
(6) Back-Trans [2] No 17.33 20.36 12.92 15.62

Table 2: Results of the popular mix-language methods applied to German→Dutch and German→Romanian zero-shot tasks.

WIT3’s2 TED corpus[13]. The validation and test sets
are dev2010 and tst2010 which are provided by the
IWSLT17 organizers.

We use the Lua version of OpenNMT3[14] framework to
conduct all experiments in this paper. Subword segmenta-
tion is performed using Byte-Pair Encoding [15] with 40000
merging operations. All sentence pairs in training and vali-
dation data which exceeds 50-word length are removed and
the rest are shuffled inside each of every minibatch. We use
1024-cell LSTM layers[16] and 1024-dimensional embed-
dings with dropout of 0.3 at every recurrent layers. The sys-
tems are trained using Adam[17]. In decoding process, we
use a beam search with the size of 15.

3.2. Baseline Systems

Let us consider the scenario that we would like to translate
from a source language to a target language via a pivot lan-
guage. In order to evaluate the effectiveness of our proposed
strategies, we reimplemented the following baseline systems:

• Direct: A system which does not exist in the real world
is trained using the parallel corpus. It is only for com-
parison purpose.

• Pivot: A system which uses English as the pivot lan-
guage. The output of the first source→pivot translation
system was pipelined into the second system trained to
translate from pivot to target.

• Zero 2L: To build this system, we followed the idea of
[3]: we added a target token to every source sentences
in the parallel corpus of source→pivot, added another
target token to every pivot sentences in the parallel cor-
pus of pivot→target, merged those two parallel cor-
pora into a big corpus and used our standard NMT ar-
chitecture mentioned in previous section to train and
decode. The only differences are the actual data and a
simpler NMT architecture we used to train the system.

• Zero 4L: Same as Zero 2L but in addition applying to
two other directions pivot→source and target→pivot.

2https://wit3.fbk.eu/
3http://opennmt.net/

The result is a parallel corpus two times larger than the
corpus in Zero 2L.

• Zero 6L: This is an extended version of our previ-
ous work[2]. There are two main differences com-
pared Zero 2L and Zero 4L: we conducted both Lan-
guage Coding and Target Forcing preprocessing steps,
the data used to trained are actually six parallel cor-
pora: source↔pivot, pivot→pivot, pivot↔target, tar-
get→target. Finallly we merged them at the end to
form a big parallel corpus.

• Back-Trans: This is not a real zero-shot system where
we back-translated the English part of the pivot-target
parallel corpus using a target-pivot NMT system. At
the end we have a source-target parallel corpus with
back-translation quality. After we obtained that direct
corpus, we apply the same steps as in the Zero 6L set-
ting to all corpora we have (8 parallel corpora in total).

3.3. Results

First we applied the baseline systems with respect to the
IWSLT17 zero-shot tasks. From Table 2 we can see that in
general, translating from German→Romanian is more diffi-
cult than German→Dutch, which is reasonable when Ger-
man and Dutch are considered to be similar. The direct ap-
proach which uses a parallel German-target corpus and the
pivot approach have similar performance in term of BLEU
score[18]. Interestingly, the Back-Trans performed better
that the direct approach on German→Romanian. We spec-
taculate that back translation might pose some translation
noise which makes the translation from German→Romanian
more robust.

Compared to the Zero 6L model (5), two other Google-
inspired models Zero 2L (3) and Zero 4L (4) from [3]
achieved quite low scores. This explains the language-bias
problem when these models used less and unbalanced cor-
pora than the Zero 6L system. However, the real zero-shot
systems (2, 3, 4, 5), excepts the pivot one (2), performed
worse than those using direct parallel corpora (1) and (7),
since the zero-shot systems have not been shown the direct
data, hence, having little or no guide to learn the translation.
Among those real zero-shot non-pivot systems, the Zero 6L
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System Zero-shot? German→Dutch German→Romanian
dev2010 tst2010 dev2010 tst2010

(1) Zero 2L [3] Yes 4.79 5.75 1.55 2.05
(2) Zero 4L [3] Yes 6.31 7.93 3.15 3.73
(3) Zero 6L [2] Yes 11.58 14.95 8.61 10.83
(3a) Zero 6L Filtered Dict Yes 12.50 16.02 9.10 11.00
(3b) Zero 6L Lang Feature Yes 13.95 17.15 9.88 11.37
(4) Back-Trans [2] No 17.33 20.36 12.92 15.62
(4a) Back-Trans Filtered Dict No 17.13 20.22 13.10 15.67
(4b) Back-Trans Lang Feature No 17.48 20.24 13.43 15.70

Table 3: Effects of the proposed strategies on performance of zero-shot translation systems

system got the best performance due to the amount and the
balance of the data used to train. Thus, from hereinafter we
consider the Zero 6L as the baseline to analyze the effective-
ness of our proposed strategies.

When we applied the proposed strategies, it is interesting
to see their effects on different types of systems. Since Zero
2L and Zero 4L do not have the language identity for words,
we cannot directly apply our strategies on those systems. In
contrast, it is straight-forward to adapt Target Dictionary Fil-
tering and Language as a Word Feature on the systems de-
scribed in [2].

Table 3 shows the performance of our strategies com-
pared to [2] and [3] methods. When we applied the strate-
gies on top of Back-Trans system, it seems that the data it
used to train is sufficient to avoid the language bias problem.
Thus, our strategies did not have a significant effect of per-
formance on this system (4a vs. 4 and 4b vs. 4). But on the
real zero-shot configuration (3), both strategies helped to im-
prove the systems by notable margins. On tst2010, Target
Dictionary Filtering (3a) brought an improvement of 1.07 on
German→Dutch. On the same test set, Language as a Word
Feature achieved the gains of 2.20 BLEU scores compared
to Zero 6L (3b vs. 3). On German→Romanian zero-shot
task, the improvements of our strategies were not as great
as on German→Dutch, but they still helped, especially on
dev2010.

Table 5 shows two examples where Target Dictionary
Filtering clearly improves the quality and readability of the
translation over the Zero 6L when applied.

Considering the effectiveness of our strategy Language
as a Word Feature on computation perspective, which is
shown in Table 4, we observed very positive results. We
compared the Zero 6L configuration and our Language as
a Word Feature system in term of training times, size of
source&target vocabularies4 and the total number of model
parameters on both zero-shot translation tasks. The models
were usually trained on the same GPU (Nvidia Titan Xp) for
8 epochs so they are fairly compared (seeing the same dataset
the same number of times). Each type of models has the same
configuration between two zero-shot tasks, excepts the parts

4In all cases, these sizes are similar numbers.

related to vocabularies5.
By encoding the language information into word fea-

tures, the number of vocabulary entries reduces to almost half
of the original method. Thus, it leads to the similar reduction
in term of the parameter number. This reduction allows us
to use bigger minibatches as well as perform faster updates,
resulting in substantially decreased training time (from 7.3
hours to 1.5 hours for each epoch in case of German→Dutch
and from 6.0 hours to 1.3 hours for each epoch in case of
German→Romanian). The strategy requires minimum modi-
fications in the standard NMT framework, yet it still achieved
better performance with much less training time.

German→Dutch

System #parameters Vocab Size Training Time
(millions) (thousands) (hours/epoch)

Zero 6L 243 68 7.3
Lang Feature 130 28 1.5

German→Romanian

System #parameters Vocab Size Training Time
(millions) (thousands) (hours/epoch)

Zero 6L 247 69 6.0
Lang Feature 122 31 1.3

Table 4: Effects of the strategy Language as a Word Feature
on model size and training time.

4. Conclusion and Future Work
In this paper, we present our experiments toward zero-shot
translation tasks using a multilingual Neural Machine Trans-
lation framework. We proposed two strategies which sub-
stantially improved the multilingual systems in terms of both
performance and training resources.

On the future work, we would like to look closer to the
outputs of the systems in order to analyze better the effects of
our strategies. We also have the plan to expand our strategies
on full multilingual systems, for more languages and differ-
ent data conditions.

5While the total number of parameters on German→Romanian is big-
ger than that of German→Dutch, the training time of German→Romanian
systems is less due to the fact that its training corpus is smaller.
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German→Dutch example
Zero 6L Een collega van mij had toegang tot investeringsgegevens van Fox guard

English meaning A colleague of mine had access to investment data of Fox guard
Filtered Dict Een collega van mij had Zugang tot investment van de autoriteiten van Fox guard

English meaning A colleague of mine had Zugang to investment from the authorities of Fox guard
Reference Een collega van me kreeg toegang tot investeringsgegevens van Vanguard

English meaning A colleague of mine received access to investment data from Vanguard
German→Romanian example

Zero 6L Pentru că s-ar as, tepta să apelăm la medic în nächsten dimineat, ă .
English meaning Because he would expect to call a doctor in nächsten morning .

Filtered Dict Pentru că s-ar as, tepta să-l chemăm pe doctori în următorul dimineat, ă .
English meaning Because he would expect us to call the doctors the next morning .

Reference Răspunsul e că cei care fac asta se as, teaptă ca noi să ne sunăm doctorii în dimineat,a următoare .
English meaning The answer is that people who do this expect us to call our doctors the following morning .

Table 5: Examples of the sentences with the words in wrong languages produced by Zero systems and the corrected version
produced by the same systems having the target dictionary filtered in decoding phase. Target Dictionary Filtering is not only
helpful in producing readable and fluent outputs but also clearly affects to the choices of next words.
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Abstract

Recent work on multilingual neural machine translation re-
ported competitive performance with respect to bilingual
models and surprisingly good performance even on (zero-
shot) translation directions not observed at training time. We
investigate here a zero-shot translation in a particularly low-
resource multilingual setting. We propose a simple iterative
training procedure that leverages a duality of translations di-
rectly generated by the system for the zero-shot directions.
The translations produced by the system (sub-optimal since
they contain mixed language from the shared vocabulary),
are then used together with the original parallel data to feed
and iteratively re-train the multilingual network. Over time,
this allows the system to learn from its own generated and
increasingly better output. Our approach shows to be effec-
tive in improving the two zero-shot directions of our multi-
lingual model. In particular, we observed gains of about 9
BLEU points over a baseline multilingual model and up to
2.08 BLEU over a pivoting mechanism using two bilingual
models. Further analysis shows that there is also a slight im-
provement in the non-zero-shot language directions.

1. Introduction
Machine translation of low-resource languages represents a
challenge for neural machine translation (NMT) [1]. Recent
efforts in multilingual NMT (Multi-NMT) [2, 3] have shown
to improve translation performance in low-resource settings.
Multi-NMT models can be trained with parallel corpora of
several language pairs to work in many-to-one, one-to-many,
or many-to-many translation directions. A simple approach,
named target-forcing [3], is to prepend to the source sentence
a tag specifying the target language, both at training and test-
ing time. In addition to performance gains for low-resource
languages, the benefit of Multi-NMT is the possibility to per-
form zero-shot translation, i.e. across directions that were not
observed at training time.

Application scenarios in which zero-shot translation can
bootstrap the creation of new parallel data – e.g. via human
post-editing– [2], show how translation performance in the
initial zero-shot direction improves over time with the addi-
tion of new parallel data. In this work, we explore instead the

* Work done during a summer internship at FBK.

Italian

English

Romanian

GermanDutch

zero-shot

pivoting pivot
ing

Figure 1: Our zero-shot translation setting for Italian-
Romanian. Parallel data is available only for Italian-
English, Romanian-English, German-English, and Dutch-
English. We leverage multi-lingual neural machine transla-
tion trained on all available parallel data to translate across
Italian-Romanian (in both directions), either directly (zero-
shot) or through English (pivoting).

possibility to enable a trained Multi-NMT model to further
learn from its own generated data. Briefly, our method works
as follows: first (1), we let the Multi-NMT engine generate
zero-shot translations on some portion of the training data;
then (2), we re-start the training process on both the gen-
erated translations and the original parallel data. We repeat
this training-inference-training cycle for a few times. Notice
that, at each iteration, the original training data is augmented
only with the last batch of generated translations. We observe
that the generated outputs initially contain a mix of words
from the shared vocabulary, but after few iteration they tend
to only contain words in the zero-shot target language thus
becoming more and more suitable for learning.

We test our approach on a Multi-NMT scenario including
Italian, Romanian, English, German and Dutch, assuming
that the zero-shot translation pair is Italian-Romanian. We
also make the assumption that all languages have just paral-
lel data with English (see Figure 1). We apply our approach
on top of the multilingual NMT training method suggested
by [2]. Experimental results show that our iterative training
procedure not only significantly improves performance on
the zero-shot directions, but it also boost multilingual NMT
in general. Finally, our approach shows to outperform pivot-
based machine translation, too.
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2. Related Work
In this section we discuss relevant works on multilin-
gual NMT, zero-shot NMT, and model training with self-
generated data, which are closely related to our approach.

2.1. Multilingual NMT

Previous works in Multi-NMT are characterized by the use of
separate encoding and/or decoding networks for every trans-
lation direction. Dong et al. (2015) [4] proposed a multi-task
learning approach for a one-to-many translation scenario,
based on a sharing representations between related tasks –
i.e the source language – in order to enhance generalization
on the target language. In particular, they used a single en-
coder in the source side, and separate attention mechanism
and decoders for every target language. In a related work
[5], used separate encoder and decoder networks for model-
ing language pairs in a many-to-many setting. Notably, they
dropped the attention mechanism in favor of a shared vector
space where to represent both text and multi-modal infor-
mation. Aimed at reducing ambiguities at translation time,
[6] employed a multi-source system that considers two lan-
guages on the encoder side and one target language on the
decoder side. In particular, the attention model is applied
to a combination of the two encoder states. In a many-to-
many translation scenario, [7] introduced a way to share the
attention mechanism across multiple languages. As in [4],
but (only on the decoder side) and in [5], they used separate
encoders and decoders for each source and target language.

Despite the reported improvements, the need of using ad-
ditional encoder and/or decoder for every language added to
the system tells the limitation of these approaches, by making
their network complex and expensive to train.

In a very different way, [2] and [3] developed similar
Multi-NMT approaches by introducing a target-forcing to-
ken in the input. The approach in [3] applies a language-
specific code to words from different languages in a mixed-
language vocabulary. In practice, they force the decoder to
translate to a specific target language by prepending and ap-
pending an artificial token to the source text. However, their
word and sub-word level language-specific coding mecha-
nism significantly increase the input length, which shows to
have an impact on the computational cost and performance
of NMT [8]. In [2], only one artificial token is prepended to
the source sentences in order to specify the target language.
Prepending language tokens has permitted to eliminate the
need of having separate encoder/decoder networks and at-
tention mechanism for every new language pair.

2.2. Zero-Shot Translation

By extending the approach in [7], zero-resource NMT has
been suggested in [9]. The authors proposed a many-to-one
translation setting and used the idea of generating a pseudo-
parallel corpus [10], using a pivot language, to fine tune their
model. Moreover, also in this case the need of separate en-

coders and decoders for every language pair significantly in-
creases the complexity of the model.

An attractive feature of the target-forcing mechanism
comes from the possibility to perform zero-shot translation
with the same multilingual setting as in [2, 3]. However,
recent experiments have shown that the mechanism fails
to achieve reasonable zero-shot translation performance for
low-resource languages [11]. The promising results in [2]
and [3] hence require further investigation to verify if their
method can work in various language settings, particularly
across distant languages.

2.3. Training with self-generated data

Training procedures using self-generated data have been
around for a while. For instance, in statistical machine trans-
lation (SMT), [12, 13] showed how the output of a trans-
lation model can be used iteratively to improve results in a
task like post-editing. Mechanisms like back-translating the
target side of a single language pair have been used for do-
main adaptation [14] and more recently by [10] to improve
an NMT baseline model. In [15], a dual-learning mechanism
is proposed where two NMT models working in the oppo-
site directions provide each other feedback signals that per-
mit them to learn from monolingual data. In a related way,
our approach also considers training from monolingual data
along dual zero-shot directions. As a difference, however,
our train-infer-train loop leverages the capability of the net-
work to jointly learn multiple translation directions.

Although our brief survey shows that re-using the out-
put of an MT system for further training and improvement
has been successfully applied in different settings, our ap-
proach differs from past works in mainly two aspects: i) in-
troducing for the first time a train-infer-train mechanism ad-
dresses Multi-NMT, and ii) we cast the approach into a self-
correcting training procedure over two dual zero-shot direc-
tions, so that incrementally improved translations mutually
reinforce each direction.

3. Neural Machine Translation
The standard NMT architecture comprises an encoder, a de-
coder and an attention-mechanism, which are all trained with
maximum likelihood in an end-to-end fashion [16]. The en-
coder is a recurrent neural network (RNN) that encodes a
source sentence into a sequence of hidden state vectors. The
decoder is another RNN that uses the representation of the
encoder to predict words in the target language [8] [17]. As
the name suggests, attention is a mechanism used to im-
prove the translation quality by deciding which part of the
source sentence can contribute mostly in the prediction pro-
cess [18]. As shown in Figure 2, which simplifies the NMT
architecture, first the encoder takes the source words on the
left (purple color), maps them to vectors and feeds them into
the RNN. When the <eos> (i.e end of sentence) symbol is
seen, the final time step initializes the decoder RNN (blue
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color). At each time step, the attention mechanism is ap-
plied over the encoder hidden states and combined with the
current hidden state of the decoder to predict the next target
word. Then, the prediction is fed back to the encoder RNN to
predict the next word, until the <eos> symbol is generated
[19].

+

BA ! <eos> YX !

 YX ! <eos>

Figure 2: NMT architecture with encoder-decoder and an at-
tention mechanism, showing a source sentence “A B” trans-
lated into a target sentence “X Y”.

4. Mixed Language Input for Multi-NMT
Our goal is to improve translation in the zero-shot directions
of a multilingual model with limited directions covered by
the training data (see Figure 1). The training strategy of the
proposed approach is summarized in Algorithm 1, while its
flow chart is illustrated in Figure 3.

To address this problem, our training procedure is per-
formed in three steps which are iterated for several rounds. In
the first step (line 2), the multilingual NMT system is trained
on the original data available. In the second step (line 5), the
trained model is run to translate between the zero-shot direc-
tions. Then, in the third step (line 8), the output translations
are combined with the corresponding source sentences and
added to the original training data. The resulting expanded
corpus is now ready to perform a new round of the training
process.

According to our train-infer-train scheme, new synthetic
data for the two zero-shot directions are generated at each
round. This process creates a duality between the two zero-
shot translation directions, which we can exploit for mutual
improvement. Indeed, for each direction, sub-optimal trans-
lations t∗ paired with the corresponding original (and well-
formed) source s are used to obtain new “parallel” (t∗,s) sen-
tence pairs that extend the training material for the other di-
rection. The translated mixed-input for the two languages
is represented as T ∗, while the target side T represents the
original sentences extracted for inference.

In the Multi-NMT scenario, the sub-optimal translations
representing the source element of the new training pairs will
likely contain a mixed-language that includes words from a
vocabulary shared with other languages. The expectation is
that, round after round, the model will generate better out-
puts by learning at the same time to translate and “correct” its

Algorithm 1: Iterative Learning Procedure
1: TRAIN: D(src, tgt)
2: Multi-NMT← initial training using dataset D
3: repeat INFER-TRAIN
4: for s = 1,T do
5: t∗← inference in duality using Multi-NMT
6: end for
7: prepare D∗([src + T ∗], [tgt + T ])
8: Multi-NMT← reload Multi-NMT, train using D∗

9: return Multi-NMT
10: until Multi-NMT converges→Multi-NMT∗

Table 1: Iterative Learning algorithm of the proposed ap-
proach using the duality of zero-shot translation directions.

own translations by removing spurious elements from other
languages. If this intuition holds true, the iterative improve-
ment will yield increasingly better results in translating be-
tween the source↔target zero-shot directions. Ideally, this
incremental training and inference cycle can continue until
the model converges (line 10).

5. Experiments
All the experiments are carried out using the open source
OpenNMT-py1 toolkit [19]. For training the models, we
used the parameters specified in Table 2. Considering the
high data sparsity of our low-resource setting, we applied a
dropout of 0.3 [20] to prevent overfitting [21]. To train the
baseline Multi-NMT, we used Adam [22] as the optimization
algorithm with an initial learning rate of 0.001. In the sub-
sequent train-infer-train rounds, we used SGD [23], with a
learning rate of 1. If the perplexity does not decrease on the
validation set or the number of epoch is above 7, a learning
rate decay of 0.7 is applied. This combination of optimizers
was found to be effective in accelerating the training in the
first few iterations. In all the reported experiments the base-
line models are trained until convergence, while each train
round after the inference stage is assumed to iterate over 10
epochs. For decoding, a beam search of size 10 is applied.

Model parameters Value
RNN type LSTM
RNN size 1024

Embedding dim 512
Encoder bidirectional

Encoder depth 2
Decoder depth 2

Beam size 10
Batch size 128

Table 2: Hyper-parameters used to train all the models, un-
less specified in a different setting.

1https://github.com/OpenNMT/OpenNMT-py
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Multi-NMTTraining Data

[source, target] Train

Infer

Source

[zst-source]

[mixed-input, zst-source]

Figure 3: Illustration of the proposed multilingual train-infer-train strategy. Using a standard NMT architecture, a portion of two
zero-shot directions monolingual dataset is extracted for inference to construct a dual source↔target mixed-input and continue
the training. The top solid line shows the training process, where as the dashed lines show the inference stage

5.1. Dataset

To evaluate our approach, we consider five languages (i.e
English (EN), Dutch (NL), German (DE), Italian (IT), and
Romanian (RO)). To simulate a low-resource scenario, each
language pair has ≈ 200k parallel sentences (see Table 3
for details). All the parallel datasets are from the IWSLT172

multilingual shared task [24].

Direction Training test2010 test2017
EN↔ DE 197,489 1,497 1,138
EN↔ IT 221,688 1,501 1,147
EN↔ NL 231,669 1,726 1,181
EN↔ RO 211,508 1,633 1,129
IT↔ RO 209,668 1,605 1,127

Table 3: Number of sentences used to train the multilingual
model on eight directions. The IT ↔ RO pairs are used to
train only the bilingual models.

To train all models, we used the same pipeline, first to get a
tokenized dataset. Then, we apply byte pair encoding (BPE)
[25], using a jointly trained (on source and target dataset)
shared BPE model to segment the tokens into sub-word units.
For this operation we used 8, 000 BPE merging rules, with a
minimum of 30 frequency threshold to apply the segmen-
tation. When training the multilingual models, the pipeline
includes adding the artificial language token at the source
side of each parallel dataset both for the training and valida-
tion sets [2]. We evaluate our models using test2010, and for
comparison we use test2017 of the IWSLT2017 evaluation
dataset.

5.2. Models

Our baseline models are trained in a multilingual and
bilingual settings. For each direction of the multilingual
model and every bilingual model we report the BLEU
[26] score computed using multi-bleu.perl3 from the Moses
SMT implementation. BLEU scores of the Multi-NMT
systems trained on the parallel data in Table 3 are re-
ported in Table 6 and 7 (second column). To com-

2https://sites.google.com/site/iwsltevaluation2017/
3http://www.statmt.org/moses

pare our zero-shot translations against those of the bilin-
gual models we trained two Italian↔Romanian models.
Both bilingual are trained with the same amount of train-
ing data used by each direction of the Multi-NMT model
(see Table 3). Moreover, as additional terms of compar-
ison, we trained two pivoting-based systems (using En-
glish as a pivot language): Italian→English→Romanian and
Romanian→English→Italian.

5.2.1. Bilingual models

The baseline models for comparison consist of: i) an eight di-
rection multilingual model (Multi-NMT), and two bilingual
NMT models.

System tst2010 tst2017
Italian→Romanian 19.66 19.14
Romanian→Italian 22.44 20.69

Table 4: BLEU scores of two bilingual NMT models
(Italian→Romanian and Romanian→Italian) on IWSLT data
tst2010 and tst2017

The results of the two bilingual models are shown in Table
4. From the Multi-NMT model (see row 9 and 10 of Table
6 and Table 7), we particularly focus on the performance of
the zero-shot directions that can be compared with the results
from these two models.

5.2.2. Pivoting

If data are available, the pivoting strategy is the most intu-
itive way to accomplish zero-shot translation, or to translate
from/into under-resourced languages through high resource
ones [27]. However, results in the pivoting framework are
strictly bounded to the performance of the two combined
translation engines, and especially to that of the weaker one.
In contrast, Multi-NMT models that leverage knowledge ac-
quired from data for different language combinations (sim-
ilar to multi-task learning) can potentially compete or even
outperform the pivoting ones. Checking this possibility is the
motivation for our comparison between the two approaches.

In our experiment we take English as the bridge language
between Italian and Romanian in both translation directions.

_____________________________________________________________
Proceedings of the 14th International Workshop on Spoken Language Translation

Tokyo, Japan, December 14th-15th, 2017

116



System tst2010 tst2017
Italian→Romanian 16.4 15.00
Romanian→Italian 18.9 17.36

Table 5: Performance of the Italian↔Romanian pivot trans-
lation directions using English as a pivot on tst2010 and
tst2017

Unsurprisingly, compared with those of the bilingual mod-
els trained on Italian↔Romanian data, the results shown in
Table 5 are lower.

On both translation directions, the bilingual models are
indeed about 3.0 BLEU points better. Such comparison,
however, is not the main point of our experiment, instead, we
aim to fairly analyze performance differences between piv-
oting and zero-shot methods trained in the same condition
which lacks Italian↔Romanian training data.

5.3. Zero-shot results

In this experiment, we show how our approach helps to
improve the baseline Multi-NMT model. The train-infer-
train procedure described in Section 4 was applied for
five rounds, where each round consists of 10 iterations.
Table 6, shows the improvement on the Italian↔Romanian
zero-shot directions using the Multi-NMT∗ model. Specif-
ically, the Italian→Romanian direction reached 17.38
BLEU score improving over the baseline (8.59) by 8.79
points. Romanian→Italian translation improved with an
even larger margin (+10.71) from 8.65 to 19.36 BLEU score.

Multi-NMT Multi-NMT∗

English→Italian 27.07 28.47
Italian→English 32.12 33.16
English→Romanian 24.65 25.37
Romanian→English 32.7 34.00
English→German 26.39 26.42
German→English 31.3 31.79
English→Dutch 30.27 30.85
Dutch→English 35.13 35.77
Italian→Romanian 8.59 17.38
Romanian→Italian 8.65 19.36

Table 6: Comparison on test2010 set between a base-
line Multi-NMT model against a Multi-NMT∗ model
with our proposed train-infer-train approach for the
Italian↔Romanian zero-shot direction. The best result for
each direction is shown in bold.

In addition, and to our great surprise, the results from our
self-correcting mechanism showed to perform even better
than the pivoting strategy. To check the validity of our re-
sults, we also compared the baseline multilingual system

Multi-NMT Multi-NMT∗

English→Italian 29.02 30.43
Italian→English 32.87 33.61
English→Romanian 20.96 21.94
Romanian→English 27.48 28.21
English→German 19.75 19.85
German→English 24.12 24.25
English→Dutch 25.37 26.12
Dutch→English 29.25 29.15
Italian→Romanian 8.18 17.08
Romanian→Italian 8.58 19.25

Table 7: Comparison on test2017 set between a base-
line Multi-NMT model against a Multi-NMT∗ model
with our proposed train-infer-train approach for the
Italian↔Romanian zero-shot direction.

and our approach on the IWSLT 2017 test set (test2017).
As shown in Table 7, the results confirm those computed
on test2010, with almost identical gains (+8.9 and +10.67).
The other important advantage of our approach is evidenced
by the performance gains obtained on the language direc-
tions supported by parallel training corpora. To put this into
perspective, all translation directions have shown improve-
ments, except for the slight drop (-0.10 BLEU) observed for
the Dutch→English direction in test2017 case.

Figure 4: Results from test2017 for the Italian↔Romanian
zero-shot directions, comparing our iterative learning ap-
proach (solid lines) with the pivoting mechanism (dashed
lines)

Comparing the results from every rounds (see Figure 4), we
observe that the training after the first inference step is re-
sponsible for the largest portion of the overall gain. This
is mainly due to the initial introduction of (noisy) parallel
data for the zero-shot directions. The contribution of the self-
correcting process can be seen in the following rounds, i.e the
improvement after each inference suggests that the generated
data are getting cleaner and cleaner.
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Italian→Romanian
Source ... che rafforza la corruzione, l’evasione fiscale, la povertà, l’instabilità.
Pivot ... poarta de bază, evazia fiscală, sărăcia, instabilitatea.
Multi-NMT ... restrânge corrupt,ia, fiscale de evasion, poverty, instabilitate.
Multi-NMT∗ ... care rafinează corupt,ia, evasarea fiscală, sărăcia, instabilitatea.
Reference ... care protejează corupţia, evaziunea fiscală, sărăcia şi instabilitatea.

Romanian→Italian
Source E o poveste incredibilă.
Pivot È una storia incredibile
Multi-NMT È una storia incredible.
Multi-NMT∗ È una storia incredibile
Reference È una storia incredibile .

English→Italian
Source We can’t use them to make simple images of things out in the Universe.
Multi-NMT Non possiamo usarli per creare immagini semplici di cose nell’universo.
Multi-NMT∗ Non possiamo usarle per fare semplici immagini di cose nell’universo.
Reference Non possiamo usarle per fare semplici immagini di cose nell’univero

Table 8: Top two examples: zero-shot translations generated by pivoting via English, multilingual translation(Multi-NMT) and
multilingual translation enhanced with out approach (Multi-NMT∗). Last example: multilingual and enhanced multi-lingual
translation in a resourced translation direction.

Looking at the sample translation outputs using the dif-
ferent approaches in Table 8, we observe that the base-
line Multi-NMT system produces mixed language out-
put (e.g. “poverty” in Italian→Romanian and “incredi-
ble” in Romanian→Italian).Thanks to our approach, the
Multi-NMT∗ system instead tends to produce more con-
sistent target language (“poverty” becomes “sărăcia” in
Italian→Romanian and “incredible” becomes “incredibile”
in Romanian→Italian). Furthermore, even in the non-zero-
shot directions there are case where the enhanced Multi-
NMT∗ system produces better translations (see the last re-
ported example).

6. Conclusions

We introduced a method to improve zero-shot translation
in multilingal NMT under particularly resource-scarce train-
ing conditions. The proposed self-correcting procedure, by
leveraging syntentic dual translations, achieved significant
improvements over a multilingual NMT baseline and outper-
formed a pivoting NMT approach for the Italian-Romanian
directions.

In future work, we plan to improve the train-infer-train
stages to reach better performance in less time and with lower
training complexity. In our current setup we did not consider
any form of selection for the dataset to be translated at the
inference stage of the train-infer-train procedure. We expect
that applying frequency and similarity based approaches to
select promising training candidates can bring further im-
provements. Moreover, we plan also to test our approach
with additional monolingual data from the two zero-shot di-
rections. Finally we plan to extend our approach to the trans-
lation of mixed language sentences (i.e code-mixing).
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Abstract

Neural machine translation (NMT) systems have demon-
strated promising results in recent years. However, non-
trivial amounts of manual effort are required for tun-
ing network architectures, training configurations, and pre-
processing settings such as byte pair encoding (BPE). In this
study, we propose an evolution strategy based automatic tun-
ing method for NMT. In particular, we apply the covariance
matrix adaptation-evolution strategy (CMA-ES), and investi-
gate a Pareto-based multi-objective CMA-ES to optimize the
translation performance and computational time jointly. Ex-
perimental results show that the proposed method automati-
cally finds NMT systems that outperform the initial manual
setting.

1. Introduction
Neural machine translation (NMT) is a new approach to
translation and has shown promising results in recent years.
Many active ongoing research are focused on developing new
architectures and training methods. When developing a ma-
chine translation system based on neural network structure,
the major design question is how to set the meta-parameter
values of the network structure and training configuration,
so that the system performs well in terms of translation per-
formance and computational cost. For network structure de-
sign, important meta-parameters include what kind of net-
work should be applied, the number of layers, the number of
units per layer, and unit type. With the increase of layers,
the problem becomes more complex. For training config-
urations, important meta-parameters include learning algo-
rithm, learning rate, dropout ratio and so on. All of these
meta-parameters interact with each other and affect the per-
formance of the whole system in a subtle way, thus they need
to be tuned simultaneously.

Usually, these meta-parameters are tuned by human ex-
perts based on their experience. Such work requires much
effort. In some ways such bottleneck may limit the wider
adoption of NMT, or lead us into locally-optimal design de-
cisions. Meanwhile, more powerful computing resource are
available for academic and public use. Our motivation is to
replace tedious manual tuning work with automatic compu-

tation conducted by computers.1 As neural network training
process is conducted off-line and a well-trained model can be
used repeatedly, it is meaningful to allocate more computa-
tional resources to meta-parameter tuning as it can alleviate
manual work.

Grid search is a simple method for meta-parameter op-
timization. However, as the number of meta-parameters in-
creases, it becomes less tractable. This is because the num-
ber of lattice points increases in an exponential way with the
increase of the number of meta-parameters. For example, if
there are ten meta-parameters to be tuned and we only try five
values for each parameter, it requires more than 750 billion
(510) evaluations. In the case of NMT, training and evaluat-
ing one instance requires significant computational resource
and time. Thus grid search is not a feasible method even us-
ing the fastest super computer. A black box meta-parameter
optimization framework that can intelligently search a proper
solution is needed.

Related work has proposed many meta-heuristic opti-
mization methods such as genetic algorithms (GA) [1], evo-
lutionary strategies (ES) [2], and Bayesian optimization (BO)
[3]. They have all demonstrated success in many practical
problems. In this study, we focus on an ES method called co-
variance matrix adaptation-evolution strategy (CMA-ES) [4]
and its multi-objective extension [5, 6]. CMA-ES has been
shown to be a practical and simple-to-implement algorithm
that finds good solutions under few instance evaluations. To
the best of our knowledge, this is the first work on applying
CMA-ES to NMT.

Experiments are implemented with the Nematus machine
translation toolkit [7]. Both single-objective optimization
based on BLEU and multi-objective optimization based on
BLEU and validation time are investigated, where validation
time represent the time cost of generating translations on a
validation data set. We show that CMA-ES can automati-
cally find NMT models that improves upon the initial setting.
Further, we analyze the factors that affect translation perfor-
mance and computational time cost.

In the following, we introduce CMA-ES and its multi-

1We use the term ”tuning” to refer to ”hyperparameter search” in neural
networks; note this differs from the fine-tuning in neural networks and the
development set tuning in statistical MT system building.
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objective extension in Section 2, then describe the machine
translation system used in this work in Section 3. Experiment
setup will be described in Section 5. Experiment results and
analysis are in Section 6 and Section 7, followed by related
work and conclusion.

2. CMA-ES META-PARAMETER
OPTIMIZATION

2.1. CMA-ES

CMA-ES is a population-based meta-heuristics optimization
method. Like GA, it encodes potential solutions as genes.
The differences between GA and CMA-ES are that CMA-ES
uses a fixed length vector x of real values as a gene, and uses
a full covariance Gaussian distribution as gene distribution
instead of directly representing them by a set of genes. In
CMA-ES, it is assumed that the value of the objective func-
tion f(x) can be evaluated, but the availability of an analyti-
cal form of the objective function f(x) and its differentiabil-
ity are not needed. Figure 1 shows the basic process of using
CMA-ES.

In our experiment, the objective function f(x) represents
the performance of the machine translation system trained
with a gene x encoding a set of meta-parameters. The
meta-parameters include model structure and training con-
figurations. Specifically, mean and covariance parameters
θ = {µ,Σ} of a Gaussian distribution for x is estimated
by CMA-ES so that the distribution is concentrated in a re-
gion where f(x) has a high value2 by maximizing expecta-
tion E [f(x)|θ] as shown in Eq. (1).

x̂ ∼ N (x|θ̂) s.t. θ̂ = argmax
θ

E [f(x)|θ]

= argmax
θ

∫
f(x)N (x|θ)dx.

(1)

In order to solve the problem efficiently, the natural gradi-
ent based gradient ascent is used. The expectation can be
approximately computed by Monte Carlo sampling with the
function evaluation yk = f(xk) as shown in Eq. (2).

∇̃θE[f(x)|θ] ≈
1

K

K∑
k=1

ykF
−1
θ ∇θ logN (xk|θ), (2)

where xk is a sample drawn from the previously estimated
distributionN (x|θ̂n−1), andF is the Fisher information ma-
trix.

Analytical forms of the updates of µ̂n and Σ̂n are ob-
tained by substituting the concrete Gaussian form into Eq.(2),
leading to:

µ̂n = µ̂n−1 + εµ
∑K

k=1 w(yk)(xk − µ̂n−1)

Σ̂n = Σ̂n−1 + εΣ
∑K

k=1 w(yk)

·
(
(xk − µ̂n−1)(xk − µ̂n−1)

ᵀ − Σ̂n−1

) (3)

2Importantly, it is worth emphasizing that CMA-ES is a black-box
method that makes no assumption on the relationship between gene value
and system performance. The search distribution used to sample next gen-
eration genes is Gaussian, but f(x) is not assumed to be Gaussian.

where ᵀ is the matrix transpose. Note that as in [8], yk in
Eq.(2) is approximated in Eq.(3) as a weight function w(yk),
which is defined as :

w(yk) =
max{0, log(K/2 + 1)− log(R(yk))}∑K

k′=1 max{0, log(K/2 + 1)− log(R(yk′))}
− 1

K
,

(4)
and R(yk) is a ranking function that returns the descending
order of yk among y1:K . That is, R(yk) = 1 for the highest
yk, and R(yk) = K for the smallest yk. This equation only
considers the order of y, which makes the updates less sensi-
tive to the choice of evaluation measurements. As the corre-
spondence to GA, the set of sampled genes {x1,x2, ...,xK}
represents a population of a generation, and an iteration of
the gradient ascent corresponds to a generation.

2.2. Multi-objective CMA-ES using the Pareto frontier

In addition to the accuracy of translation, objectives such as
time cost are also important in practice. Suppose we want to
maximize J objectives F (x) , [f1(x), f2(x), . . . , fJ(x)]
jointly with respect to x. To handle the situation where the
objectives may conflict with each other, we adopt Pareto op-
timality [9, 10]. We say xk dominates xk′ if fj(xk) ≥
fj(xk′) ∀ j = 1, .., J and fj(xk) > fj(xk′) for at least
one objective j, and write F (xk).F (xk′). When given a set
of candidate solutions, xk is Pareto-optimal iff no other xk′

exists such that F (xk′) . F (xk). There are several Pareto-
optimal solutions given a set of candidates. The subset of
all Pareto-optimal solutions is known as the Pareto frontier.
Compared to combining multiple objectives into a single ob-
jective via an weighted linear combination, the Pareto defini-
tion has an advantage that weights need not be specified and
it is more general.

CMA-ES can be extended to optimize multiple objectives
by modifying the rank function R(yk) used in Eq.(4). Given
a set of solutions {xk}, we first assign rank = 1 to those on
the Pareto frontier. Then, we exclude these rank 1 solutions
and compute the Pareto frontier again for the remaining solu-
tions, assigning them rank 2. This process is iterated until no
{xk} remain, and we obtain a ranking of all solutions accord-
ing to multiple objectives in the end. Figure 2 shows the intu-
ition behind multi-objective optimization in our work, where
BLEU score and negative validation time are used as the ob-
jectives. We expect superior individuals with higher BLEU
score and lower translation time than the initial one are ob-
tained by the automatic optimization by CMA-ES.

3. Neural Machine translation
3.1. Encode-Decoder Model

The neural machine translation (NMT) system we used in
this experiment is based on an attentional encoder-decoder
architecture as implemented in Nematus [7]. This is very
similar to the structure proposed by [11].

The NMT model is part of the family of models using
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encoder-decoder with recurrent neural networks. The en-
coder is implemented as a bidirectional neural network with
gated recurrent unit [12]. First, it reads the input sentence,
which is a sequence of m words x = x1, ..., xm. The for-
ward RNN reads the input sequence from x1 to xm and the
reverse RNN reads the sequence from xm to x1. The hidden
states of the two RNN at each time-step are concatenated to
form the encoding, or annotation vectors h1, ..., hm.

The decoder is trained to predict the target word sequence
y = (y1, ..., yn), and is also implemented as a recurrent neu-
ral network. The decoder predicts each word yi based on a
recurrent state si, previous word yi−1 and a context vector ci.
The context vector ci is computed as a weighted sum of anno-
tations ci =

∑
j=1,...,m αijhj , where the weight αij is based

on a single-layer feedforward neural network. The weights
can be viewed as ”attention” on the input. During training,
we use the previous word yi−1 according to the target refer-
ence; during evaluation or test, we use the word previously
predicted by the RNN decoder as yi−1 and run a beam search
to generate the translation (beam is 5 in our case).

3.2. Subword Preprocessing

We follow the work of [13] in subword preprocessing, which
uses byte pair encoding (BPE) to split words into subword
units. The motivation is to reduce the number of distinct vo-

cabulary items in the Encoder-Decoder model. Large vocab-
ulary may lead to slower models and sparser statistics.

We briefly describe the BPE preprocessing procedure
here: First the symbol vocabulary is initialized with all char-
acters in the training set. The frequency of each symbol pair
is calculated, and we iteratively merge the most frequent pair
to create a new symbol. In other words, each merge operation
produces a new vocabulary item that represents a character
n-gram. Very frequent character n-grams, such as frequent
words, eventually become a single symbol. The final vocab-
ulary size of BPE equals to the size of the initial character
set, plus the number of BPE merge operations.

While BPE is a simple preprocessing method to handle
the large vocabulary problem in NMT, the optimal number
of BPE merge operations in unclear. Intuitively, a larger vo-
cabulary size should lead to better translation accuracy, as-
suming sufficient data to estimate the model parameters. The
effect on translation time is uncertain: on one hand, smaller
vocabulary implies a faster softmax operation in the RNN
decoder, but also a longer sequence to process. Finally, the
impacts of BPE vocabulary size may be different for source
and target.

4. EXPERIMENTAL SETUP
4.1. Data

We performed two sets of experiments: single-objective ex-
periment and multi-objective experiment. In the single-
objective experiment, we optimize translation accuracy,
which is measured by BLEU on the validation (develop-
ment) set. In the multi-objective one, we optimize transla-
tion accuracy and computational cost jointly. The computa-
tional cost is measured by the translation time (seconds) on
validation set. We use the data from Kyoto Free Transla-
tion Task version 1.4 (KFTT)3 for both experiments. KFTT
contains Wikipedia articles about Kyoto tourism and tradi-
tional Japanese culture, religion, and history. These arti-
cles are originally in Japanese and are manually translated

3http://www.phontron.com/kftt/
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Table 1: Data statistics

Articles Sentence Japanese English
pairs words words

Train 14126 330k 6.2M 5.9M
Dev 15 1166 27.8k 24.3k
Test 15 1160 29.6k 26.7k

into English by NICT.4 The English side is preprocessed
(i.e. tokenized, lowercased, filtered to exclude sentences
more than 40 words) using standard machine translation tools
from Moses, and the Japanese side is word-segmented using
Kytea5. Both sides are then broken in subword units inde-
pendently using BPE, where the exact BPE meta-parameter
(number of merge operations) is automatically tuned via
CMA-ES.

The bitext is separated into training, validation (dev), and
test sets. The training set is used for training the NMT mod-
els, development set used for measuring BLEU and com-
putation time, the objectives to be optimized. The test set
is only used for reporting final results. We focus on the
Japanese-English direction, and the baseline results using
Giza++/Moses PBMT on the KFTT leaderboard is 15.41
BLEU for dev and 17.68 BLEU for test. There is a stronger
result of 16.93 BLEU for dev and 19.35 BLEU for test on
the leaderboard. It is a Moses PBMT system that utilizes
pre-ordering (permuting Japanese words into English SVO
order prior to training and translation), which have demon-
strated substantial gains in Japanese-English tasks [14, 15].
We compare with the standard 15.41 BLEU baseline using
bitext in their original word order, and leave pre-ordering’s
effect on NMT to future work. Table 1 summarizes the data
used for experiments.

4.2. Meta-parameters

Table 2 shows meta-parameters that are subject to tuning by
CMA-ES. All Nematus meta-parameters that are not shown
in the table are set to their defaults. The meta-parameters
we tune for can be divided into model architecture (e.g. size
of embedding, LSTM unit) and training configuration (learn-
ing rate, drop out). Their initial values were manually tuned
slightly to achieve a reasonable starting BLEU of 16.48 on
the dev set and 15.13 on the test set. The corresponding com-
putation times for decoding the dev and test sets are 248 and
230 seconds, respectively.

Our goal in the experiment is to run evolution and
observe whether these initial values and corresponding
BLEU/time can be automatically improved without manual
effort. If evolution can search through a large range for meta-
parameters, we can expect a highly optimized system. That
is the generalization of this black-box approach to automatic

4http://alaginrc.nict.go.jp/WikiCorpus/index_E.
html

5http://www.phontron.com/kytea/

optimization. The generality can also help us investigate the
association of some meta-parameters with the machine trans-
lation system’s performance. The same initial values are used
for both single-objective and multiple-objective experiments.

In order to apply CMA-ES, we first need to encode the
meta-parameters into a fixed-dimensional gene vector. De-
pending on the domain and possible values of each meta-
parameter, a mapping from a real number to a desired do-
main is needed to translate the gene value to the actual
configuration. For the meta-parameters BPE merge op-
erations (bpe op src, bpe op trg), word embedding dimen-
sion (dim word) and LSTM dimensions (dim lstm), we used
int(exp(x)) since they may be large positive integers and
exp(x) can represent a large number with a small expo-
nent. For the other meta-parameters such as dropout, align-
ment regularization, and learning rate, which are positive but
small, we used abs() to ensure they are positive as the genes
sampled from Gaussian distribution might be negative. There
were 10 meta-parameters to tune so the dimension of gene
vector was 10, for both single and multi-objective experi-
ment.

4.3. Details of the CMA-ES Setup

Experiments were performed using the TSUBAME 2.5 su-
percomputer that equips with NVIDIA K20X GPGPU’s6.
We have conducted 10 CMA-ES generations for single-
objective experiment and 5 generations for multi-objective
experiment. Each generation consisted of 30 individuals for
both single and multi-objective optimization. In the single-
objective experiment, the training time was limited to a max-
imum of 48 hours for each generation; in multi-objective ex-
periment, the training time was a maximum of 36 hours. We
limited the maximum training time for computational rea-
sons: we found that sometimes the training process of an
model may take a week until convergence, but in practice
the BLEU scores are not very different from the model at
36+ hours. (See Figure 3 for an example). We think that in
CMA-ES, high precision estimates of the final BLEU or time
values at convergence are not necessary. It is more efficient
to run more generations of CMA-ES, as opposed to spending
a long time to obtain the most precise estimate of a gene’s
BLEU/time rank. The 36 or 48 hours limit on training time
is a practical tradeoff.

The experimental process is shown in Figure 4. After
sampling genes from the Gaussian search distribution, genes
will be converted into meta-parameter configurations. Then
the model will be trained using the training set for up to 36
or 48 hours. We call each set of configurations an individual
or gene, interchangeably. All individuals of one generation
are executed in parallel. After training, the models are used
to translate the dev set, and BLEU scores and computation
time scores are collected. We rank all individuals based on

6http://www.gsic.titech.ac.jp/en
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Table 2: Meta-parameters tuned in this study. The initial values are the baseline settings obtained by manual tuning, and is the first
individual seeded in CMA-ES. Example results of single and multiple objective evolution are shown: (a) is the individual with
maximum dev BLEU of single-objective evolution, achieved at generation 8; see Figure 5. (b) is the individual with minimum
computation time in multi-objective evolution’s final generation, (c) is the individual with the maximum dev BLEU in multi-
objective evolution, achieved at generation 3, and (d) is another individual on the Pareto frontier, achieved at generation 2. Note
that (b), (c), and (d) are three of the five points on the Pareto frontier in Figure 6. All of them are considered ”optimal” in the
multi-objective sense and the single model to deploy in practice should be the human designer’s decision.

Meta-parameter Initial (a) Single (b) Multiple (c) Multiple (d) Multiple
value objective objective objective objective

# BPE merge operations on Source (bpe op src) 5000 5250 5345 5011 5102
# BPE merge operations on Target (bpe op trg) 5000 6617 4622 5706 5877
# dimension of word embedding (dim word) 100 121 333 99 104
# of LSTM units (dim lstm) 400 496 123 459 430
alignment regularization (alpha c) 0 0.188 0.158 0.249 0.043
learning rate 0.0001 0.100 0.213 0.295 0.083
dropout prob. of embedding (dropout embedding) 0.2 0.148 0.017 0.147 0.070
dropout prob. of LSTM hidden unit (dropout hidden) 0.2 0.152 0.036 0.099 0.103
dropout prob. of source words (dropout source) 0.1 0.026 0.044 0.117 0.013
dropout prob. of target words (dropout target) 0.1 0.204 0.094 0.019 0.102
dev BLEU 16.48 18.83 17.42 18.04 18.02
dev computation time 248 264 222 269 241

Figure 3: BLEU (y-axis) by number of epoch (x-axis) for an
example model/gene.

their scores and update the distribution, via CMA-ES update
equations. We then sample new genes and the whole process
is repeated for a number of generations until our budget con-
straint (e.g. 10 generations for single-objective experiment).

5. RESULTS
5.1. Single-objective evolution

For the single-objective evolution experiment, we evaluated
a total of 10× 30 = 300 models. For visualization purposes,
we choose those individuals with the highest dev BLEU in
each generation and plot them on Figure 5. The figure shows
how development set BLEU and validation time varies with
the number of generation in single-objective evolution that
optimizes for development set BLEU.

We observe a general trend of increasing BLEU as evo-
lution progresses. For example, the 8-th generation achieves
18.83 BLEU, the highest among all results, and significantly
improves from the baseline of 16.48. There is no guaran-

tee that the improvements are monotonic, however; for ex-
ample, note that an individual in generation 7 achieves lower
BLEU compared to that of generation 6. There is also a slight
increase in computation time during the evolution process,
which is expected since our single-objective CMA-ES does
not account for that objective.

To summarize, the best individual of CMA-ES, achieved
at generation 8, has a dev BLEU of 18.83. This outperforms
the dev BLEU of our NMT baseline initial setting (16.48) and
the KFTT Moses baseline (15.41). In terms of BLEU on the
test set, this model achieves 16.45, which is an improvement
over the NMT baseline initial setting (15.13). So we con-
clude that CMA-ES has demonstrated its ability to improve
upon manually-tuned results. This is done at the expense of
considerable computational resources, but the process is en-
tirely automatic and required no human intervention.7 Meta-
parameters of this model is shown in Table 2, column (a).

5.2. Multi-objective evolution

Figure 6 shows a visualization of our multi-objective evolu-
tion results, where we evaluated a total of 5 × 30 = 150
models. The Pareto optimal models of each generation are
plotted. Note that there is a general trend toward individuals
moving towards the lower-right hand side of the plot. If we
compute the Pareto frontier on all points aggregated in Fig-
ure 6, we will obtain 5 points: (18.04 BLEU, 269 seconds),
(18.02, 241), (17.42, 222), (16.82, 209), (16.66, 206). The
first three of these are shown as examples (b), (c), (d) in Table

7However, note that our best NMT test BLEU is still lower than the
KFTT Moses baseline test BLEU (17.68). Further work is needed to ex-
amine the differences between NMT and PBMT on this dataset.
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Figure 4: Experimental process of applying CMA-ES to automatically tune NMT models.
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Figure 5: Single-objective evolution results, from generation
(gen) 1 to 10. The baseline model with initial value settings
is labeled as gen0 and indicated by a cross (x). Note the
general improvement of BLEU from the early generations
(gen1-3, labeled as triangles) to the later ones (rhombus and
circle).

2. The meta-parameter settings of these Pareto-optimal mod-
els are quite distinct. For instance, example (b) has small
LSTM units while examples (c) and (d) have larger LSTM
units but smaller word embedding dimensions. The target
vocabulary (bpe op trg) of example (b) is smaller than the
initial setting, while those of (c) and (d) are larger; all have
larger source target vocabulary.

All the Pareto points in the multi-objective evolution re-
sults outperform the baseline initial setting in terms of dev
BLEU; some of them outperform the baseline in both BLEU
and computation time. Therefore we conclude that the Pareto
extension to CMA-ES is achieving its expected effect. There
are no improvements in terms of BLEU over the single-

Figure 6: Multi-objective evolution results. The initial model
(gen0) is labeled (+), followed by generation 1 models (cir-
cles), generation 2 models (triangles), etc.

objective CMA-ES setting, however. One reason might be
that the computation resources used for the multi-objective
experiment is less than that of the single-objective experi-
ment. In any case, ideally multi-objective optimization will
subsume the single-objective case, and we plan to investigate
this further in future work.

6. Analysis
While the results are promising, we want to analyze the
statistics of our experiments in order to improve the effi-
ciency of CMA-ES for future work. Figure 7 plots the distri-
bution of various meta-parameters computed across the 300
and 150 models in single- and multi-objective experiments.
We note the distribution of word and LSTM dimensions has
much wider variance in the multi-objective case compared to
the single-objective case (Figure 7 (d) vs (c)), which is ex-
pected. Interesting, the range of BPE merge operations (and
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thus, the final vocabulary size) is relatively small for both
cases (Figure 7 (b) vs (a)). We hypothesize there needs to
be some more aggressive (or diverse) sampling in order to
fully explore the meta-parameter space. We also think our
mapping function that converts real numbers from the CMA-
ES Gaussian sample to training configurations may require
some re-design: for example, the range of int(exp()) may
be too narrow, and the use of abs() may induce symmetric
properties and confound positive and negative values.

7. Conclusion & Related Work

We demonstrate that an evolution strategy like CMA-ES can
be use to automate the tuning of neural network based ma-
chine translation system. We start with an initial manually-
tuned NMT baseline on KFTT, and show that our our single-
objective and multi-objective CMA-ES method can create
models that perform better in BLEU and/or computation
time.

There is a large literature on blackbox optimization,
with many successes in practical problems that are diffi-
cult to characterize. The main approaches include evolu-
tionary methods (GA or ES) [1, 2] and Bayesian optimiza-
tion [3, 16]. Recently, in the context of automatic tuning of
neural network systems, reinforcement learning [17] and a
bandit learning [18] approaches have been proposed. Each
approach has its strengths: Evolutionary strategies are effi-
ciently parallelizable. Bayesian optimization models uncer-
tainty in a principled fashion. Reinforcement learning cap-
tures sequential dependencies among hyperparameters. Ban-
dit learning provides a framework for trading-off computa-
tional resources. In future work, it will be interesting to com-
pare these different approaches on a wider array of datasets.

Pareto optimality has been applied to statistical MT in
the context of optimizing multiple evaluation metrics such
as BLEU and TER [19, 20]. We are not aware of previous
work that performs multi-objective optimization on BLEU
and computation time.

For automatic tuning of neural networks, evolutionary
strategies have demonstrated strong results in image clas-
sification [21], acoustic modeling [6], and language mod-
eling [22], among others. In NMT, a grid search of meta-
parameters is performed in [23]. They used a total of more
than 250,000 GPU hours to explore common variations in
NMT architectures. Their conclusions include: (a) deep en-
coders are more difficult to optimize than decoders, (b) dense
residual connections are good, (c) LSTMs outperform GRUs.
Our work investigates different meta-parameters; it will be
interesting to validate their findings with CMA-ES.
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Abstract

Bilingual sequence models improve phrase-based trans-
lation and reordering by overcoming phrasal independence
assumption and handling long range reordering. However,
due to data sparsity, these models often fall back to very
small context sizes. This problem has been previously ad-
dressed by learning sequences over generalized represen-
tations such as POS tags or word clusters. In this paper,
we explore an alternative based on neural network models.
More concretely we train neuralized versions of lexicalized
reordering [1] and the operation sequence models [2] using
feed-forward neural network. Our results show improve-
ments of up to 0.6 and 0.5 BLEU points on top of the baseline
German→English and English→German systems. We also
observed improvements compared to the systems that used
POS tags and word clusters to train these models. Because
we modify the bilingual corpus to integrate reordering opera-
tions, this allows us to also train a sequence-to-sequence neu-
ral MT model having explicit reordering triggers. Our moti-
vation was to directly enable reordering information in the
encoder-decoder framework, which otherwise relies solely
on the attention model to handle long range reorder-
ing. We tried both coarser and fine-grained reordering op-
erations. However, these experiments did not yield any im-
provements over the baseline Neural MT systems.

1. Introduction
Source-target bilingual sequence models have been used suc-
cessfully as feature in phrase-based SMT [3, 2]. They
are based on minimal translation units, and overcome in-
dependence assumption by handling non-local dependencies
across phrasal boundaries, thus providing better translation
and reordering mechanism. Such models however suffer
from data sparsity and fall back to very small context sizes
during test time. This shortcoming is addressed by learning
factored models [4, 5, 6], learned over POS and morpholog-
ical tags or using word classes [7, 8, 9].1

An alternative way to address data sparsity and learn bet-
ter generalizations is to use continuous representations. Neu-
ral networks (NN) have shown success in Statistical Ma-
chine translation with n-best re-ranking [12, 13] or directly
as a feature [14, 15] used during decoding. More recently,

1as obtained during GIZA training [10] or using brown clusters [11]

attention-based encoder-decoder Recurrant Neural Network
(RNN) model [16], which trains a single large neural net-
work, has emerged as the new state-of-the-art in MT.

In this work, we neuralize two commonly used reorder-
ing models namely lexicalized reordering [1] and the oper-
ation sequence model (OSM) [2] and integrate them as fea-
ture in phrase-based MT. We convert word-aligned bi-text
into a sequence of operations through a deterministic algo-
rithm (See Algorithm 1 in [17] ), the resulting vocabulary
and number of model parameters can become very large. A
model trained on such representation may suffer from data
sparsity. To overcome this, we separate the streams of source
and target sequences and concatenate them to simulate the
jointness. A feed-forward neural network is then trained on
such concatenated n-gram sequences.

The OSM model exhibit very rich reordering opera-
tions varying from Insert GAP to JUMP Forward and
JUMP Backward to multiple open gaps which may be
hierarchically created. In an alternative method, we re-
place complicated reordering operations with Monotonic,
Swap and Discontinuous operations, and train a neu-
ral model with coarser tags. This model is similar to the lex-
icalized reordering model, however much richer as it is con-
ditioned on longer source-target contextual history and also
previous reordering decisions.

We experimented with German-to-English and English-
to-German language pairs. German is syntactically divergent
from English and also exhibit very rich morphology, thus
prone to data sparsity. These are the two problems we are
addressing in this work. Our results show improvements of
up to +0.6 and +0.5 BLEU points in German-to-English and
English-to-German baselines respectively. We also demon-
strated that neuralized OSM model performed better than the
ones trained on POS tags and word-clusters. The neuralized
OSM model outperformed the simpler lexicalized variant, al-
though only slightly.

While training the Neural OSM (and Neural lexical-
ized reordering model) we embed reordering information in
form of operations in the training corpus. This also allows
us to train sequence-to-sequence neural MT system,
where the target side is conditioned on both lexical and re-
ordering states. [18] recently showed that integrating struc-
tural bias such as Position bias, i.e. relative positions
of a source and corresponding target word, improves the at-
tention mechanism. We tried to replicate this effect by i)
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Figure 1: Lexical Reordering Models [20]: m = monotonic,
s = swap, d = discontinuity (l: left, r: right)

linearizing the source to be in the same order as the target us-
ing word-alignments and ii) incorporating reordering states.
Our motivation was that such reordering triggers will aid the
attention model to better handle reordering. However, our
results did not yield any improvements.

The remainder of this paper has been organized as fol-
lows: Section 2 describes the operation sequence and the
lexicalized reordering model. We then present the neural-
ized versions of these models. Sections 3 and 4 describe our
experimental setup and discusses the results. Section 5 gives
account on related work and Section 6 concludes the paper.

2. Reordering Models
In this section we briefly revisit the two commonly used
reordering models in the phrase-based Moses [19] namely
the lexicalized reordering model and the operation sequence
model. We then describe our neural versions of these models.

2.1. Lexicalized Reordering Model

The lexicalized reordering model originally proposed by [1]
is the defacto reordering model used in phrase-based SMT
(PBSMT). The idea is to learn orientation of a phrase w.r.t
to previous phrase (or the last word of the previous phrase).
An orientation could be one of the three reordering opera-
tions namely Monotonic, Swap, Discontinuous.
If the source phrases Fa(j−1) and Fa(j)

2 are adjacent and in
the same order as the target phrases Ej−1 and Ej , the ori-
entation is Monotonic. If they are in the opposite order of

2The mapping function a(j) aligns the target phrase Ej to the source
phrase Fi, where Fi = Fa(j).

Ej−1 and Ej , then the orientation is Swap, otherwise it is
Discontinuous. See Figure 1 for illustration. For each
phrase, we compute its probability of being reordered with
the orientations o =M,S,D as below:

pr(o|Fa(j), Ej) =
count(o, Fa(j), Ej)

count(Fa(j), Ej
)

Improved versions [20, 21] have been subsequently inte-
grated into Moses toolkit. The former computes orientation
only based on the last word of the previous phrase, rather
than the entire phrase and the latter, hierarchically combines
all previous phrases to compute the probability. In our work,
we will compute orientation based on previous source word,
but condition on n previous source-target units. This is be-
cause our model is based on minimal translation units [3] and
does not contain phrasal boundaries.

2.2. Operation Sequence Model

The operation sequence model (OSM) converts aligned bilin-
gual corpus into a sequence of operations using a determin-
istic algorithm. An operation is either joint source-target lex-
ical generation, or a reordering operation such as Insert
Gap or Jump Forward or Backward to a specific open
gap. A Markov model is estimated from the resulting opera-
tion corpus. More formally a bilingual sentence pair (T, S)
and its word-alignment A is transformed deterministically to
a heterogeneous sequence of translation and reordering oper-
ations (o1, o2, . . . , oJ ). A 5-gram model is then learned over
these sequences:

Posm(T, S) ≈
J∏

j=1

P (oj |oj−n+1...oj−1)

The operation sequence for the example shown in Figure
1 according to the algorithm described in the original paper
is given below:

Generate Target Only (it) – Insert Gap – Generate (wäre,
would be) – Generate (ebenso, just as) – Generate (unverant-
wortlich, irresponsible) – Jump Back (1) – Insert Gap – Gen-
erate (zu, to) – Generate (wollen, wish) – Generate Source
Only (,) – Jump Back (1) – Insert Gap – Generate (gehen, to
go) – Jump Back (1) – Generate (noch weiter, further)

The OSM is trained on minimal translation units (MTUs) and
does not adhere to phrasal boundaries. Access to joint source
target information enables it to better handle long distance
dependencies. The jumps and gap operations allow OSM to
learn more complex reordering patterns. However, due to
data sparsity it is impossible to observe all possible reorder-
ing patterns during the training. The model therefore falls
back to very small context sizes. Earlier work has addressed
this problem by estimating estimating the bilingual sequence
models on POS tags or word clusters [22, 5, 6].
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Figure 2: Neural OSM model where we use 3-gram target
words and a source context window of size 4. For illustra-
tion, the output yn is shown as a single categorical variable
(scalar) as opposed to the traditional one-hot vector represen-
tation.

2.3. Neural Reordering Models

In this paper we take a different approach to address the prob-
lem of data sparsity by training the model using a feed for-
ward neural network. Below we present the proposed neural
versions of the OSM and lexicalized reordering models.

2.3.1. Neural Operation Sequence Model

A straight forward way is to build a neural language model
using the generated sequences of operations. However, be-
cause of the joint nature of the model, the vocab size be-
comes quadratic (M×N) causing severe data sparsity. A
way to alleviate this problem is to separate out source and
target streams and concatenate them to form history. See
Table 1 for mapping operations into separate streams of
source and target operations. Here are the considerations
that we made: i) When a source or target word is un-
aligned (Generate Source Only (Y) or Generate
Target Only (X) operations), we don’t append any-
thing on the other side, ii) Whenever there is a reordering
operation (Insert Gap/Jump Forward/Jump Back
(N)) we append it on both sides, iii) We replace source
words on both sides for the Generate Self operation,
iv) Multi-word source and target cepts are collapsed together
even if they appear in a different order in the original se-
quence, v) Note that source-side is now reordered to be order
of target just as in the original model. We generate separate
streams of source and target operation and then concatenate

them to train the neural model. Let so = so1 , so2 ...son and
to = to1 , to2 ...tom be streams of source and target operations,
the model is defined as:

P (T, S) ≈
J∏

j=1

P (toj |toj−n+1
...toj−1

, soj ...soj−m+1
)

wherem and n are the source and target word histories which
we concatenate to form input to the neural network. As ex-
emplified in Figure 2, this is essentially an (m + n)-gram
neural network LM (NNLM) originally proposed by [23].
Each input word i.e. source or target vocabulary word or
a reordering operation in the context is represented by a D
dimensional vector in the shared look-up layer L ∈ R|Vi|×D

where Vi is the input vocabulary.3 The look-up layer then
creates a context vector xn representing the context words of
the (m+n)-gram sequence by concatenating their respective
vectors in L. The concatenated vector is then passed through
non-linear hidden layers to learn a high-level representation,
which is in turn fed to the output layer. The output layer has a
softmax activation over the output vocabulary Vo of target
words. Formally, the probability of getting k-th word in the
output given the context xn can be written as:

P (yn = k|xn, θ) =
exp (wT

k φ(xn))∑|Vo|
m=1 exp (w

T
mφ(xn))

(1)

where φ(xn) defines the transformations of xn through the
hidden layers, and wk are the weights from the last hidden
layer to the output layer. For notational simplicity, hence-
forth we will use (xn, yn) to represent a training sequence.
By setting m and n to be sufficiently large, neural OSM
can capture long-range cross-lingual dependencies between
words, while still overcoming the data sparseness issue by
virtue of its distributed representations (i.e., word vectors).

2.3.2. Neural Lexicalized Reordering Model

We train the neural lexicalized reordering model in the same
manner as that of the Neural OSM model. Traditional lexi-
calized reordering models use Monotonic, Swap and
Discontinuous. We retained the Swap (SW) op-
eration and divided the Discontinuous (D) category
into Forward Discontinuity (FD) and Backward
Discontinuity (BD) following [24]. We also removed
the Monotonic orientation from the generation as it is ob-
vious that words flow monotonically when there is no re-
ordering. This is also done similarly in the OSM generation.
Again like the Neural OSM generation, the reordering tags
are split across both the streams. See Table 1 for the sample
generation (last 2 columns).

Note that this model is not exactly the neural version of
the lexicalized reordering in which the task is just to pre-
dict orientation/reordering decision (Monotonic, Swap,
Discontinuous) based on previous source-target word
(or phrase). Here we are trying to score the entire sequence

3Note that L is a model parameter to be learned.
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Operations Source Stream Target Stream Source Stream Target Stream

Generate Target Only (it) it it
Insert Gap Insert Gap Insert Gap Jump Fwd FD
Generate (wäre, would be) wäre would be wäre would be
Generate (ebenso, just as) ebenso just as ebenso just as
Generate (unverantwortlich, irresponsible) unverantwortlich irresponsible unverantwortlich irresponsible
Jump Back (1) Jump Back (1) Jump Back (1) BD BD
Insert Gap Insert Gap Insert Gap
Generate (zu, to) zu to zu to
Generate (wollen, wish) wollen wish wollen wish
Generate Source Only (,) , ,
Jump Back (1) Jump Back (1) Jump Back (1) BD BD
Insert Gap Insert Gap Insert Gap
Generate (gehen, to go) gehen to go gehen to go
Jump Back (1) Jump Back (1) Jump Back (1) BD BD
Generate (noch weiter, further) noch weiter further noch weiter further

Table 1: Operation Sequences and corresponding streams for Neural OSM and Lexicalized RM training

which contains both lexical (word generation) and reorder-
ing choices. The task is to find most probable sequence of
lexical and reordering decisions. The difference compared
to the OSM is the granularity of the reordering tags. In this
model, we just have one reordering decision per lexical gen-
eration. In the OSM model, the model can have very com-
plex sequence of reordering operations in between adjacent
lexical generations. A more accurate version of the neural
lexicalized reordering is described in [25]. They cast it as a
classification problem, and use a continuous space represen-
tation treating a phrase as a dense real-valued vector. But un-
like traditional model, they condition reordering probabilities
also on the words of previous phrase to capture longer depen-
dencies. This is similar to our work, except that our context
information can go even beyond previous phrases and previ-
ous reordering decisions are also part of the context.

2.3.3. Neural Lexical Sequence Model

In this variation, we simply remove the reordering opera-
tions from the sequences and train the neural model only on
the lexical sequences. This allows us to study how much
of the improvement is obtained due reordering triggers inte-
grated within these lexical sequences versus addressing spar-
sity by learning generalized representations. However note
that such a lexical sequence model can still be considered
a reordering model because the source was pre-ordered (or
linearized) based on target (See Table 1) and generated in
the target order. This model is based on the tuple sequence
model [26] and several neural variants of it are presented in
[13]. Another variation is presented in [15], but rather than
pre-ordering the source, they select m neighboring word on
the left and right sides of the source word si that is aligned
to the target word ti being modeled.

2.3.4. Decoding

We integrate these models as a feature in phrase-based de-
coding. Word alignments for the current phrase along with
the history of previously generated operations are used to
generate a new sequence of (lexical and reordering) opera-
tions. This sequence is then scored to give probability of the
hypothesized phrase.

3. Experiments
3.1. Training Data

We experimented with German↔English language pairs us-
ing the data made available for the International Workshop
on Spoken Language Translation (IWSLT’14). The data con-
tains roughly 5M bilingual sentence pairs. We used only
TED corpus [27] plus a subset of 800K parallel sentences
from the rest of the parallel data to train the neural mod-
els.4 We concatenated dev- and test-2010 for tuning and used
test2011-2013 for evaluation.

3.2. MT Settings

We trained a Moses phrase-based system [19] following the
settings described in [28]: maximum sentence length of 80,
Fast-align [29] for word-alignments, an interpolated Kneser-
Ney smoothed 5-gram language model [30], lexicalized re-
ordering [31] and a 5-gram OSM model [2]. We used k-best
batch MIRA [32] for tuning.5 We trained alternative base-
lines by adding OSM models trained on POS and word clus-

4Training models on the entire data required roughly 18 days of wall-
clock time (18 hours/epoch on a Linux Ubuntu 12.04.5 LTS running on a 16
Core Intel Xeon E5-2650 2.00Ghz and 64Gb RAM) on our machines. We
ran one baseline experiment with all the data and did not find it better than
the system trained on randomly selected subset of the data. In the interest of
time, we therefore reduced the NN training to a subset (1M).

5All systems were tuned twice.
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German-English

System test11 test12 test13 Avg.

Baseline 35.0 30.3 27.1 30.8
OSMpos 35.3 30.5 27.1 31.0
OSMmkcls 35.1 30.1 26.8 30.7

OSMneural 35.8 31.5 27.0 31.4
Lex.reoneural 35.5 31.1 27.2 31.3
Lexneural 35.3 30.8 26.9 31.0

English-German

Baseline 25.7 21.7 23.4 23.6
OSMpos 25.9 21.9 23.8 23.9
OSMmkcls 25.8 21.8 23.4 23.7

OSMneural 26.1 22.1 24.2 24.1
Lex.reoneural 26.1 22.4 23.7 24.1
Lexneural 26.0 22.2 23.7 24.0

Table 2: Comparing performance of Neural Reordering
Models against N-gram-based Models. Quality measured in
cased-bleu [34]

ters (50) obtained by running mkcls [6]. We used LoPar
for German and MXPOST tagger for English POS tags. We
trained 7-gram models to enable wider context than the reg-
ular word-based models.

3.3. NN Training

We trained our neural reordering models using NPLM6

toolkit [14] with the following settings. We used a target
context of 6 words (including reordering operations) and a
corresponding source window of 7 words (also including re-
ordering operations), forming a joint stream of 14-grams for
training. We restricted source and target side vocabularies to
20K and 40K most frequent words. We used an input em-
bedding layer of 150 and an output embedding layer of 750.
Only one hidden layer is used with a Noise Contrastive Es-
timation7 or NCE [33]. Training was done using mini-batch
size of 1000 and using 100 noise samples. All models were
trained for 25 epochs.

3.4. Results

Table 2 compares the results for our neural reordering mod-
els against baseline containing traditional reordering models.
The baseline system is equipped with lexicalized and OSM
model trained over word forms using count-based/n-gram-
based models. We see that adding OSM models trained over
generalized representation such as POS tags help slightly

6http://nlg.isi.edu/software/nplm/
7Training neural language model with backpropagation could be pro-

hibitively slow because for each training instance, the softmax layer requires
a summation over the entire output vocabulary. One way to avoid this repet-
itive computation is to use a Noise Contrastive Estimation of the loss func-
tion.

(+0.2 BLEU improvement in DE-EN and +0.3 in EN-DE).
Using word clusters instead of POS tags did not help as
much.

The next set of rows show results when using neuralized
OSM and Lexicalized reordering models. The neural OSM
model gave an improvement of +0.6 and +0.5 in DE-EN
and EN-DE pairs. Neuralized lexical reordering performed
almost as good as the neural OSM model suggesting that
fine-grained reordering tags and hierarchical jumps add lit-
tle value. The lexical sequence model without reordering
tags (last row) performed lower (in the DE-EN pair) show-
ing that there is some value in integrating reordering tags8

during generation. In the EN-DE pair the difference is in-
significant showing that much of the gains are coming from
addressing lexical sparsity and not better reordering.

4. Neural Machine Translation
Neural Machine Translation [16, 35] is quickly becoming
the predominant approach to machine translation. Rather
than modeling different linguistic aspects (lexical generation,
reordering, fertility etc.) as feature components and tun-
ing them to optimize BLEU, NMT is trained in an end-to-
end fashion. Given a bilingual sentence pair, we first gen-
erate a vector representation of the source sentence using
encoder and then map this vector to target sentence using
a decoder. The long distance source and target contextual
dependencies are modeled using recurrent neural networks
(RNN) with bilingual Long Short Term Memory (LSTM)
[36]. The attention model [16] serves as an alignment model
which enables the decoder to focus on different parts of the
source as it generates the target sentence. Unlike phrase-
based decoding, the reordering window is not limited to a
frame of 6 words. This allows NMT to capture very long
range reordering like syntax-based models [37].

In this work, we tried to explore whether explicitly in-
tegrating reordering triggers into the RNN-based encoder
and decoder, improve the performance of the attentional
model. We use the training data generated earlier (to
train the neural OSM models – See Table 1), to train the
sequence-to-sequence NMT model. This allows the
decoder to condition on both lexical and reordering states
when generating the new target word, which itself can be
a word or a reordering operation. Our motivation was that
such reordering triggers and pre-ordering of source9 might
help the attention mechanism with its task.

Note that the target sequence and alignments are
both latent variables during decoding, we need to pre-
dict the pre-ordered (or reordering augmented sequence).
To do this, we additionally train a source→pre-ordered
(or reordering augmented) source sequence using another
sequence-to-sequence model.

8We also tried variations with reordering tags either on source or target
side. The current variation with tags on both sides worked best.

9Remember that we linearize the source based on target using word-
alignments
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German-English

System test11 test12 test13 Avg.

Baseline 33.9 29.2 27.5 30.2
OSM 32.2 27.6 25.6 28.5
Lex.reo 29.2 24.8 22.8 25.6
Lex 30.8 26.6 23.9 27.1

Table 3: Training NMT systems with pre-ordered data, with
lexical reo. operations, OSM operations

German-English

System test11 test12 test13 Avg.

OSM 45.7 42.0 36.6 41.4
Lex.reo 48.0 45.2 43.2 45.5
Lex 52.0 50.8 49.3 50.7

Table 4: Source to pre-ordered (or reordering augmented)
system

4.1. System Settings

We trained a 2-layered LSTM encoder-decoder with atten-
tion. We used seq2seq-attn implementation [38] with
the following settings: word vectors and LSTM states have
500 dimensions, SGD with initial learning rate of 1.0 and
rate decay of 0.5, and dropout of 0.3. The MT systems are
trained for 20 epochs, and the model with best dev loss is
used for extracting features for the classifier.

4.2. Results

Table 3 shows the results from training NMT systems from
pre-ordered data and using reordering augmented data. No
gains were observed compared to the baseline system. In fact
there was significant drop in all cases. One reason for this
drop could be inaccuracy in predicting pre-ordered (reorder-
ing augmented) sequences. This can be seen in the BLEU
scores shown in Table 4.10 [39] also found pre-ordering the
source-side in Neural MT deteriorated system performance
in Japanese↔English and Chinese↔English pairs. They
conjectured that pre-ordering introduces noise in terms of
word-order hindering the learning process more difficult.

5. Related Work
A significant amount of research has been carried to alleviate
data sparsity when translating into or from morphologically
rich languages. [4] integrated different levels of linguistic in-
formation as factors into the phrase-based translation model.
The idea of translating to stems and then inflecting the stems
in a separate step has been studied by several researchers

10The BLEU scores are computed using pre-ordered (or reordering aug-
mented) references generated using word-alignments of original source-
target evaluation sets.

[40, 41]. POS tags are used in bilingual sequence models to
enable wider context by [5, 22, 6]. Several researchers used
word clusters in training data to obtain smoother distributions
and better generalizations [8, 7, 9]. [42] used factors and par-
allel back-offs to address the issue of data sparsity. Contin-
uous space models are used earlier for n-best re-ranking or
directly as a feature in phrase-based MT [12, 13, 43, 44, 15].
[45] recently proposed an LSTM recurrent neural reordering
model which directly models word pairs and their alignment.
However, because SMT decoder requires fixed history, it is
only possible to use the feature in the n-best re-ranking.

A whole new paradigm based on deep neural network
evolved as a parallel framework for machine translation [16,
35]. The RNN-based sequence-to-sequence model learns
generalized representations to overcome data sparsity prob-
lems and learn long distance dependencies successfully. This
is further enhanced by using sub-word [46] or character-
based models [47] to address the OOV-word problem. [18]
has recently shown that integrating structural biases based on
relative positions and fertilities improves the attention mech-
anism. [48] and [49] used side-constraints i.e. adding suffix
tag at the end of the source sentence or prefix tag in the be-
ginning of the target sentence to control the behavior of the
decoder i.e. politeness in the case of former and domain in
the latter. Our work is similar in a sense that we are trying
to add reordering constraints, forcing the decoder to produce
a specific reordering pattern. However, our method did not
yield any improvements.

6. Conclusion

Traditional reordering models in phrase-based system suffer
from data sparsity. In this paper, we presented neuralized
versions of these reordering models (the OSM and Lexical-
ized reordering models) and used them as a feature in Phrase-
based SMT. Our evaluation on German-English language
pairs showed an improvement of up to 0.6 BLEU points. We
also demonstrated gains compared to the previous solution
where these models are trained on parts-of-speech tags and
word clusters, to address data sparsity and for better general-
ization. The code will be pushed to Moses toolkit.11 We also
tried our pre-ordered and reordering augmented training data
to train sequence-to-sequence neural MT models, with a mo-
tivation to explicitly add reordering triggers in the encoder
representation and aid the attention mechanism. However,
our modification to the natural source order and integration
of reordering symbols in the training data, did not yield im-
provement.
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Abstract

We present and apply two methods for addressing the
problem of selecting relevant training data out of a general
pool for use in tasks such as machine translation. Build-
ing on existing work on class-based language difference
models [1], we first introduce a cluster-based method that
uses Brown clusters to condense the vocabulary of the cor-
pora. Secondly, we implement the cynical data selection
method [2], which incrementally constructs a training corpus
to efficiently model the task corpus. Both the cluster-based
and the cynical data selection approaches are used for the first
time within a machine translation system, and we perform a
head-to-head comparison.

Our intrinsic evaluations show that both new meth-
ods outperform the standard Moore-Lewis approach (cross-
entropy difference), in terms of better perplexity and OOV
rates on in-domain data. The cynical approach converges
much quicker, covering nearly all of the in-domain vocab-
ulary with 84% less data than the other methods.

Furthermore, the new approaches can be used to se-
lect machine translation training data for training better sys-
tems. Our results confirm that class-based selection using
Brown clusters is a viable alternative to POS-based class-
based methods, and removes the reliance on a part-of-speech
tagger. Additionally, we are able to validate the recently pro-
posed cynical data selection method, showing that its per-
formance in SMT models surpasses that of traditional cross-
entropy difference methods and more closely matches the
sentence length of the task corpus.

1. Data Selection, Previously
1.1. Moore-Lewis Data Selection

The standard data selection method of Moore and Lewis [3]
uses cross-entropy difference as the similarity metric to esti-
mate the relevance of each sentence in the general pool cor-
pus. This method takes advantage of the presumed mismatch
between the pool data and the task domain. It first trains an
in-domain language model (LM) on the task data, and then
trains another LM on the full pool of general data. The aver-

age per-word perplexity of each sentence in the pool data is
computed relative to each of these models. The cross-entropy
Hlm(s) of a sentence s, according to language model lm, is
the log of the perplexity of the language model on that sen-
tence. The cross-entropy difference score of [3] is:

HLMTASK
(s)−HLMPOOL

(s).

Sentences that are most like the task data, and most un-
like an average sentence in the full pool will have lower
cross-entropy difference scores. A modification of this
method, the bilingual Moore-Lewis criterion [4] used for se-
lecting bilingual data for machine translation. This is a sim-
ple extension, combining the cross-entropy difference scores
from each side of the corpus; i.e. for sentence pair 〈s1, s2〉(

HLMTASK1
(s1)−HLMPOOL1

(s1)
)

+
(
HLMTASK2

(s2)−HLMPOOL2
(s2)

)
.

For both the regular and bilingual Moore-Lewis methods,
data selection is performed by sorting the sentences accord-
ing to the corresponding criterion and picking the top n sen-
tences (or sentence pairs). Determining the optimal value of
n is typically done empirically, training systems on subsets
of increasing size, and evaluating on a held-out set.

1.2. Class-based Language Difference Models for Data
Selection

The cross-entropy difference method can be improved by us-
ing language difference models (LDMs) instead of normal
language models to compute the cross-entropy scores [1].
The standard and bilingual Moore-Lewis data selection
methods use n-gram language models to calculate the cross-
entropy difference scores needed to rank sentences in the data
pool. However, this creates a structural mismatch in the al-
gorithm. The standard language models used in the com-
putation are generative models; they can be used to predict
the next word. Yet, the actual cross-entropy difference score
is discriminative in nature, because it asks: is the sentence
more like the task corpus, or more like the pool corpus?
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This conceptual gap is well-known, and has led to data
selection approaches that use classifiers to determine domain
membership. However, to build a classifier is to fall into a
trap! Only the Moore-Lewis score is discriminative; the un-
derlying corpora themselves are not. This is readily seen by
noting that a sentence can appear in both the task and the pool
corpora without any contradiction: “task-ness” and “pool-
ness” are defined by construction rather than by any inherent
characteristic. The two could overlap by 1%, or by 99%, and
they would still be two corpora labeled ‘task’ and ‘pool’.

It may help to reframe the ‘task’ corpus as “a pile of data
that we already know we like”, and the ‘pool’ corpus as “a
pile of data about which we do not yet have an opinion”. It
is not necessary to know why we like the data in the task
corpus; it is also not necessary to have any opinion about
whether the pool data looks useful, or not. With this view, the
two corpora are not in opposition. Because they do not form
opposing ends of a spectrum, then there is no underlying “in-
domain vs out-of-domain” classification problem.1

We previously defined a discriminative representation of
the corpus as one that explicitly marks how the corpora dif-
fer. This helps quantify the difference between the task and
the pool corpora. In [1], every word in the corpora was re-
placed by a synthetic tag consisting of a class label and a
discriminative marker. This procedure led to a representa-
tion of the text that explicitly encoded language differences
between the corpora. Once the text had been transformed,
the regular Moore-Lewis cross-entropy difference method is
applied: two “language models” are trained on the task and
the pool. As the representation is discriminative, we have
snuck discriminative information into the generative frame-
work of the language models, so the two models are actually
language difference models. Each sentence is then scored
with the two models, and the scores are subtracted and used
to sort the data pool and select the top n lines. The bilingual
version of class-based language difference models is exactly
the same as bilingual Moore-Lewis: the corpus representa-
tion has changed, but the algorithm has not.

The tags in that work combined part-of-speech (POS)
tags plus a suffix indicating the relative bias of each word.
Both they and [5] showed improved translation results when
using the class-based difference labels to train the models
for cross-entropy difference computation, instead of just us-
ing the words themselves. A variationused 20 class labels
derived from an unsupervised POS tagger to create the lan-
guage difference model [6] , but they did not obtain positive
results when selecting monolingual data for back-translation
and then subsequently using the artificially-parallel data to
train a neural MT system.

1 We still use ‘in-domain’ and ‘task’ interchangeably.

2. Proposed Methods
2.1. Cluster-Based Language Difference Models

Using POS tags, as the basis for the discriminative tags that
reduce the lexicon, creates a dependency on such a part-of-
speech tagger. Such a tool is not always reliable, nor even
available, for many languages nor specialized kinds of lan-
guage. [1] posited that other methods of creating classes that
capture underlying relationships within sentences (such as
clustering or topic labels) might yield similar improvements.

Following that hypothesis, we experimented with data
selection using class-based language difference models.
The synthetic difference representations were created using
Brown cluster labels (generated from all of the words in the
corpora) plus a relative-bias qualifier. Brown clustering [7] is
a way of partitioning a lexicon into classes according to the
context in which the words occur in a corpus. Context, in this
case, means the distribution of the words to their immediate
left and right. The process of creating the clusters also gen-
erates a hierarchy above them, in the form of an unbalanced
binary tree. Each word is assigned a bit string, and words
that are statistically similar with respect to their neighbors
will have similar bit strings and thus will be close together in
the tree. An advantage of this method is that the number of
clusters is freely specifiable, with a theoretical maximum of
V , the size of the vocabulary. Choosing the correct amount
is important, as too low a number would lead to poor-quality
clusters, but generating a high number of them is computa-
tionally expensive.

Following standard practice, we chose 1,000 as the num-
ber of clusters and added a suffix to indicate how much more
likely a word is to appear in the task than in the pool corpus.
Consistent with Table 1 of [1], we binned the probability ra-
tios by order of magnitude (powers of e), from e−3 to e3. We
indicated e−3 < x < e−2 with the suffix “--”, e1 < x < e2

as “+”, and so on. The following is an example of the text’s
new discriminative representation:

Original massive biotische krisen ... in

vulkanen , gletschern , ozeanen .

Transformed 682/0 UNK/+ 935/0 3/- 7/0

890/0 1/0 890/0 1/0 862/+ 2/0

The number before the slash indicates the cluster ID, and
the marker after it represents the first digit of the log (i.e.
exponent) of the ratio of the word’s probability to appear in
the task corpus divided by its probability in the pool corpus.

Our class-based language difference model representa-
tion condensed the vocabulary of each of the corpora by at
least 97%. Table 1 contains the sizes of the corpus vocabu-
laries before and after the cluster-based reduction.

It is on this transformed text that the language difference
models were trained and the cross-entropy difference scores
computed. After ranking and selecting, the sentences were
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Corpus Word Types Condensed Reduction

Task (DE) 93,767 1,691 -98.20 %

Task (EN) 53,284 1,562 -97.07 %

Pool (DE) 1,135,226 2,570 -99.77 %

Pool (EN) 894,270 2,375 -99.73 %

Table 1: Size of the vocabularies that form the representation
of the corpora used by the language difference models.

transformed back to the original words and the MT systems
were trained as usual.

2.2. Cynical Data Selection

The Moore-Lewis cross-entropy difference method has
proved enduring, despite the subsequent development of sev-
eral other methods with slightly better performance. Cross-
entropy difference has had the advantage of being intuitive,
reasonably effective, and easy to implement and integrate
into existing MT pipelines. That said, it also has some struc-
tural problems.

Its subtractive relevance score implicitly defines the task
and pool corpora as being opposing ends of a single spec-
trum: if the in-domain LM likes a sentence, it must be good,
and if the pool LM likes it, then the sentence is irrelevant.
This is never true, because language does not decompose
cleanly into disjoint subsets, much less disjoint domains nor
topics. The cross-entropy difference method is particularly
weak when the task and pool corpora are similar, because the
scores cancel out. Furthermore, the cross-entropy difference
score indicates onlythat the selected sentences are well-liked
by the in-domain model. It does not know whether the sen-
tences are known to actually help model the in-domain data,
nor if they even cover the in-domain vocabulary.

Cynical data selection [2] is a recent method to incre-
mentally construct an efficient training corpus that models
the in-domain corpus as closely as possible. Each sentence
is scored by how much it would help model a particular task
corpus, if it were added to the existing training corpus at the
current iteration. The core idea was described as “an incre-
mental greedy selection scheme based on relative entropy,
which selects a sentence if adding it to the already selected
set of sentences reduces the relative entropy with respect to
the in-domain data distribution” [8].

Cynical selection2 is an iterative algorithm that keeps
track of how well the currently-selected data can model the
task data. This is done via measuring the perplexity of a un-
igram LM trained on the selected sentences and evaluated
on the in-domain corpus. The method iterates through all
the words in the lexicon, and computes the expected entropy

2 Sentences are only selected if they are of provable utility, regardless of
whether an in-domain LM would like it, hence the name.

gain from adding a single instance of that word to the se-
lected data. This step enables the algorithm to depend on
the number of words in the lexicon rather than the number
of sentences in the pool. The best word (that lowers en-
tropy the most) is chosen. Given that word, the algorithm
iterates through all the available (un-picked) sentences con-
taining that word, and computes the expected entropy change
from adding that single sentence by itself to the previously-
selected set. The sentence with the most negative change is
added, and the task perplexity is recomputed, taking into ac-
count the sentence that was just selected.

3. Experimental Setup

3.1. Data

We experimented on the German-to-English parallel data
from the MT evaluation campaign for IWSLT 20173. Our
task data was the TED Talks corpus [9], comprising 218k
parallel training sentences. The pool of available data con-
sisted of 17.6M parallel sentences assembled from mul-
tiple sources: the preprocessed dataset from the WMT
2017 translation task4 (containing the Europarl v7, Common
Crawl and News Commentary corpora) and the OpenSub-
titles2016 collection5. We tuned on dev2010 and tested
on the concatenation of the test2010, test2011,
test2012, test2013, test2014, and test2015
datasets released for IWSLT 2017.

All corpora were preprocessed with the standard
Moses [10] tools following the same pipeline employed in
the preparation of the WMT 2017 preprocessed MT data6.
The sizes of the resulting datasets are in Table 2.

Corpus Contents Sentences Tokens (DE)

Task TED Talks 218,020 4.0 M

Pool WMT17 5,852,458 134.8 M

OpenSubtitles 2016 11,811,574 100.1 M

Total 17,664,032 235 M

Tune dev2010 920 19.3 k

Test test2010-2015 8,431 154.8 k

Table 2: German-English parallel data statistics.

3https://sites.google.com/site/
iwsltevaluation2017/data-provided

4http://www.statmt.org/wmt17/translation-task.
html

5http://opus.lingfil.uu.se/OpenSubtitles2016.php
6http://data.statmt.org/wmt17/translation-task/

preprocessed/de-en/prepare.sh
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3.2. SMT Training Pipeline

We trained our models with a statistical machine translation
pipeline built upon a combination of open-source tools. Input
data was further subjected to various normalizations, such as
lowercasing, diacritic normalization, and the standardization
of quotation marks. We split compound nouns on the Ger-
man input using ASVToolBoox [11].

Translation was done with the Joshua decoder [12],
an implementation of hierarchical phrase-based statistical
machine translation. In some experiments, an additional
target-side background language model was used while de-
coding, to promote fluent output and provide a more re-
alistic use case. Word alignments were learned using
fast align [13] with alignment models estimated in both
directions and symmetrized using grow-diag-final-and [14].
Grammar extraction was performed using the open-source
framework Thrax7 and run on potent Elastic MapReduce
(EMR) clusters during training. Tuning was done with the
Margin Infused Relaxed Algorithm (MIRA) [15] and opti-
mized on BLEU [16].

3.3. Data Selection Tools

The standard Moore-Lewis method uses n-gram language
models to compute the cross-entropy score of each sentence
according to the task and pool LMs. We used kenlm [17] to
estimate 6-gram Kneser-Ney (KN) smoothed language mod-
els, padding the vocabulary to 1.5M.

Our implementation of class-based difference models
used Brown clusters and unigram frequency ratios to auto-
matically produce discriminative representations of the task
and pool corpora. These followed the steps in [1], with ev-
ery word replaced by a new token consisting of a cluster la-
bel and a bias suffix. We employed the unsupervised Brown
clustering algorithm [7] for the construction of the clusters.
The label+suffix tokens explicitly show how and where the
two corpora’s distributions differ from each other. We then
trained 6-gram KN language models on this new represen-
tation. These models were used to compute cross-entropy
difference scores over the new representation, and then the
sentences were sorted by score. The discriminative repre-
sentations were replaced by the original sentences after the
selection process completed.

We wrote (and released8) an open-source implementation
of the cynical selection algorithm. Reducing the vocabulary
size, by collapsing words into a single label, makes the al-
gorithm’s approximations tractable. We used the algorithm’s
default heuristics for vocabulary reduction, shown in Table 3.
Each criterion was applied (in order) to every word v in the
joint lexicon of the corpora. If the criterion was met, the
word was replaced, and no further criteria were applied to the
word. After all the criteria were applied, most of the vocab-
ulary types had been collapsed down to a handful of labels,

7https://github.com/joshua-decoder/thrax
8 https://github.com/amittai/cynical

and the only words that remained intact were ones whose
probability ratios were biased towards the task distribution.

Criteria Word Types Replaced By

CTASK(v) = 0 1,050,590 useless

CPOOL(v) = 0 9,131 impossible

CTASK(v) < 3 4,946 dubious

AND CPOOL(v) < 3

PTASK(v)
PPOOL(v)

< e−1 3,945 bad

e−1 < PTASK(v)
PPOOL(v)

< e 22,453 boring

Table 3: Criteria used to reduce the German lexicon from
1.14M to 29k for cynical data selection, baseed on the counts
C and probabilities P for each word. Only the first criterion
to match each word was applied, the word then being re-
placed by the corresponding tag.The second column shows
how many word types were replaced by each rule.

The intuition for the replacements is as follows: If a word
v does not appear in the task corpus, then it is useless for
estimating relevance because it does not figure into the en-
tropy calculations. If a word is in the task corpus but not
in the pool, then it is impossible to change its empiri-
cal probability by adding sentences from the data pool. The
probability of rare words (occurring once or twice in both
corpora) cannot be estimated reliably, so their statistics are
dubious. Words that are heavily skewed towards the pool
distribution are bad for determining usefulness or informa-
tion gain, because there is a danger that they will be over-
represented in the selected sentences. We also tried append-
ing a bias suffix to the bad label, following the procedure
from the class-based language difference model approach.

Even if we selected sentences randomly, we can expect
to accurately estimate the probabilities of words occurring
at roughly the same rate in both corpora, so their probabil-
ity ratios are boring. We experimented with further di-
viding this category based on the frequency of these words
in the task corpus, with the goal of limiting the number of
sentences in which each token appears. This is important be-
cause the cynical algorithm implementation avoids compu-
tational complexity in terms of the number of sentences by
replacing it with computational complexity in terms of the
number of sentences in which words appear. However nearly
every sentence in the pool contained a boring word, and it
is not clear that this had any effect.

Due to the size of the pool corpus, we enabled the cyn-
ical data selection’s “batchmode”, where a variable amount
(log k) of sentences are selected per iteration. This variable
batch size is computed from k, the number of sentences that
contain the “most useful word” for the current iteration.

_____________________________________________________________
Proceedings of the 14th International Workshop on Spoken Language Translation

Tokyo, Japan, December 14th-15th, 2017

140

https://github.com/joshua-decoder/thrax


4. Experiments and Results

We evaluated three data selection approaches: standard
Moore-Lewis (monolingual and bilingual), class-based lan-
guage difference models using Brown clusters (also monolin-
gual and bilingual), and cynical data selection (monolingual
only). The monolingual methods were used on each of the in-
put and output languages, so we have results for all methods
on both languages. Our contribution is the first published use
of Brown clusters for class-based language difference mod-
els, and also of cynical data selection. We present a head-to-
head comparison of both, as well as comparing against the
cross-entropy difference standards.

Each data selection method produced a subset of the pool
corpus in which sentences are ranked by their relevance. The
first four assign an absolute relevance score (some variation
on cross-entropy difference) for each sentence. The cynical
method provides a ranking, but the score for each sentence is
the relative relevance score of each sentence with respect to
all the higher-ranked sentences that precede it. For each ex-
periment, we examined increasingly larger slices of the data
ranging from the best n = 100k to the best n = 12M sen-
tences out of the 17.6M sentence pairs available.

4.1. Perplexity of Modeling In-Domain Data

In all cases, we first evaluated the selected data by itself, ex-
amining how well the selected data can model the task data.
For this, we measured the perplexity and OOV count on the
in-domain corpus, using models trained on only the selected
data. For each of the data selection methods, we trained lan-
guage models on the most relevant subsets of various sizes.
The language models were similar to those used for selection
(n-gram order 4, and vocabulary padded to 1.5M). We evalu-
ated these models on their perplexity on the entire in-domain
TED training set (218k sentences). Figure 1 and 2 show the
full language modeling perplexity results for the input (Ger-
man) and output (English) languages, respectively.

Each of the cluster-based data selection methods on the
German side outperformed their vanilla Moore-Lewis coun-
terparts (comparing monolingual cluster-based vs monolin-
gual Moore-Lewis, both on the German side, and com-
paring bilingual cluster-based vs bilingual Moore-Lewis).
At 6M sentences selected, near convergence, the cluster-
based methods are each 20 perplexity points better than the
standard cross-entropy difference, but the cynical selection
method is slightly better. At 2M sentences selected, where
the cynical method is nearly at its optimal perplexity, the
gap between the cluster-based and standard approaches is
40 points, but the cynical method is 20 points better still, as
highlighted in Table 4, despite being a monolingual method.

On the English side, the improvements are similar in pat-
tern though smaller in magnitude. This is expected, as En-
glish is easier to model than German. The cluster-based
methods significantly outperform the regular Moore-Lewis
methods. The cynical method once again converges the
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Figure 1: Evaluating the selected data via perplexity scores
on the TED DE (input) corpus. The cluster-based methods
are better than their standard counterparts, and the cynical
method is better still.

Method ppl at 2M ppl at 6M

Moore-Lewis, mono (DE) 289.2 217.7

Cluster-based, mono (DE) 241.3 198.5

Moore-Lewis, bilingual 264.8 209.2

Cluster-based, bilingual 218.7 189.6

Cynical, mono (DE) 192.5 185.2

Table 4: Perplexity scores on the TED DE (input) corpus for
the models trained with 2M and 6M selected sentences.

fastest of all the methods (after 2M sentences, compared to
6M for the others), though the cluster-based methods reach
the lowest perplexity.

4.2. Out-of-Vocabulary Rate on In-Domain Data

Next, we computed the out of vocabulary (OOV) token count
on the task corpus, using language models trained on only the
selected data. Figures 3 and 4 show the OOV curves for the
selected data with respect to the roughly 4M-token TED cor-
pus in the input (German) and output (English) languages,
respectively. In both graphs, the cluster-based Moore-Lewis
methods converge to their final OOV count after selecting 6
to 8 million sentences. At the 6M sentence mark, the cluster-
based methods have one-third fewer OOV tokens in the TED
corpus than the vanilla Moore-Lewis methods. This substan-
tial improvement corroborates the results from the method as
proposed in [1].

However, the OOV rate of data selected using the new
cynical data selection method is better still, by a large mar-
gin. At 1M sentences, the cynical subset has 85% fewer
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Figure 2: Comparison of perplexity scores on the TED EN
(output) corpus. The new methods perform better than the
standard approaches.

OOVs than the monolingual Moore-Lewis, and 65% fewer
than the monolingual cluster-based version. More impor-
tantly, the first million sentences selected via the cynical
method cover more of the task vocabulary than any quantity
of data selected via the other methods. This rapid conver-
gence to the minimum possible OOV rate – the number of
OOV tokens relative to all of the pool data – results from the
heuristic used by the cynical algorithm to select the word that
needs to be covered by the next selected sentence.

4.3. Improving an In-Domain System with Selected Data

Next, we performed an extrinsic evaluation, using the se-
lected data to train machine translation models to be used in
combination with the baseline in-domain system. In this way
we tested the ability of the data selection methods to select
subsets of the data that were actually useful in practice.

Figure 5 shows the machine translation results using
BLEU. The horizontal dashed line is a static baseline that
uses all of (and only) the available in-domain training data.
The other curves are from multi-model systems where a
model trained on selected data is used in combination with
one trained on the task data. Each system curve in Figure 5
shows the average score over 3 tuning and decoding runs, to
mitigate the variability of MT tuning.

The baseline adapted systems using data selected via
vanilla monolingual Moore-Lewis and the bilingual version
performed better than the in-domain-only system, as ex-
pected. The difference between the monolingual and the
bilingual versions’ scores were minor, with the bilingual ver-
sions slightly ahead. The cluster-based versions of Moore-
Lewis, which used language difference models to compute
the cross-entropy difference scores, were roughly half a point
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Figure 3: Number of OOV tokens in the TED DE (input)
corpus, according to LMs trained on the selected data.
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Figure 4: Number of OOV tokens in the TED EN (output)
corpus, according to LMs trained on the selected data.

better than the standard versions. The cynical methods per-
formed as well as the fine-grained cluster-based approaches,
despite collapsing approximately 850,000 vocabulary items
down to a dozen coarse labels.

BLEU scores corresponding to models trained with 2M
and 6M selected sentences are compared in Table 5. These
results demonstrate that completely automatic clustering
methods can be used to construct language difference mod-
els, so class-based version of cross-entropy difference need
not depend on the availability of linguistically-derived labels.

As a further test, we examined the use of these selected
corpora inside a more robust system: one that has both in-
domain parallel data, and a large background target-side lan-
guage model. Figure 6 shows the BLEU scores of multi-
model systems that also incorporate a large background lan-
guage model for decoding.
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Figure 5: Comparison of BLEU scores on multi-model sys-
tems using both task data and subcorpora (from 100k to
12M sentences) selected via each data selection method. The
dashed line corresponds to a system trained on the task data
only. The thin solid line indicates the result (28.59) obtained
from training with the entire pool of 17.6M sentences.

Table 6 shows numeric values of the scores at 2M and 6M
selected sentences, computed by averaging 2 training runs
with target-side language model for fluency. Incorporating
the background LM leads to overall score increases of +1 to
+2 BLEU points compared to the results in Figure 5. Again,
the cluster-based extension of Moore-Lewis outperforms the
vanilla version. However, the cynical selection method ex-
hibits bimodal performance: For smaller amounts of selected
data, up to 4M sentences, it follows the performance of the
class-based methods. After that, it switches sharply to track-
ing the performance of the vanilla methods. The gap is not
large, so it might be due to jitter from tuning, but it is curious.

4.4. Better Matching of In-Domain Sentence Length

One of the advantages of data selection is that it allows for
significantly smaller translation systems that perform at least
as well as one trained on the full large-scale pool corpus.
This holds true for all of the methods compared in this work:
The size reduction of the translation systems is roughly pro-
portional overall to the reduction in training corpus size.
However, we noticed that the translation systems trained on
the cynical subcorpora are twice as large as the ones selected
using cross-entropy difference variants. We discovered that
the Moore-Lewis style selection methods produced subcor-
pora that were almost identical in size, both on disk and in the
number of tokens. The cynical method produced subsets con-

Method BLEU at 2M BLEU at 6M

Moore-Lewis, mono (DE) 27.50 28.07

Cluster-based, mono (DE) 27.88 28.47

Moore-Lewis, bilingual 27.59 28.24

Cluster-based, bilingual 27.96 28.54

Cynical, mono (DE) 27.85 28.60

Table 5: BLEU scores on preprocessed data at 2M and 6M
selected sentences from averaging 3 runs for a system, con-
figured without background language model.

Method BLEU at 2M BLEU at 6M

Moore-Lewis, mono (DE) 28.55 29.61

Cluster-based, mono (DE) 29.19 29.90

Moore-Lewis, bilingual 28.72 29.56

Cluster-based, bilingual 29.34 29.93

Cynical, mono (DE) 29.33 29.69

Table 6: BLEU scores on preprocessed data at 2M and 6M
selected sentences from averaging 2 runs using the more ro-
bust configuration with background language model.

taining significantly longer sentences than the other methods.
Upon examination the sentences seemed fairly ordinary (i.e.
normal sentences, not particularly long), and it was the other
methods that were producing significantly shorter sentences.
Figure 7 shows how the average sentence length changes
with the number of sentences selected for each method.

The in-domain average sentence length is 19 tokens per
sentence, and the pool corpus average is 14. All of the
Moore-Lewis variants have average sentence lengths even
shorter than the pool average, and never greater. The cynical
method mostly selected pool data matching the task average
sentence length, despite having no explicit way to note the
length of the selected sentences. This appears to substanti-
ate the assertion that “the length biases of the penalty and
the gain terms counteract each other, guarding the algorithm
from the Moore-Lewis method’s fixation on one-word sen-
tences with a very common token” [2].

5. Conclusions
We have shown that both cluster-based language difference
models and cynical data selection can be used to train better
task-specific machine translation systems and more closely
model a task corpus. This is the first published use of both
methods. Using Brown clusters instead of POS tags makes

_____________________________________________________________
Proceedings of the 14th International Workshop on Spoken Language Translation

Tokyo, Japan, December 14th-15th, 2017

143



0 2 4 6 8 10 12

Number of selected sentences (millions)

28.0

28.4

28.8

29.2

29.6

30.0
Task+Pool data

Task data only

System with background language model
BLEU on test2010-2015 data

Cynical
Cluster-based bilingual Moore-Lewis
Cluster-based Moore-Lewis
Bilingual Moore-Lewis
Moore-Lewis

Figure 6: Same as Figure 5 but for the system with back-
ground language model. The BLEU score for the configura-
tion with the entire pool data set is 29.77.

the language difference model variant of Moore-Lewis be
both language- and situation-agnostic. We have not com-
pared the two directly, but have shown that automatic cluster-
ing can be used successfully. This is good for domain adapta-
tion scenarios where the particular kind of language is either
low-resource or wildly different from the kind of data used
to train NLP tools.

Also, we have presented empirical validation of the cyn-
ical selection method. Despite some of the crude algorith-
mic choices (4 labels for 97% of the lexicon) as well as run-
ning in batch mode, the cynical selection method’s perfor-
mance matches the best variant of Moore-Lewis. Further im-
provements might well be possible with more fine-grained
labels (e.g. adopting the Brown clustering labels from this
work). The cynical method, as implemented, converges after
roughly 66% less data has been selected, compared to any of
the cluster-based and vanilla Moore-Lewis methods, and has
the best out-of-vocabulary word coverage.

The tradeoff is that while cynical selection picks better
sentences, leading to smaller selected corpora, it also uses
significant amounts of RAM (60gb for 17m sentences) and
time (1 day; after all, n log n is still super-linear in com-
plexity). Our implementation is inefficient, but the memory
requirements will always be larger than the class-based lan-
guage difference model version of Moore-Lewis which was
developed to reduce the run-time requirements for data selec-
tion. This is because cynical selection must store the entire
pool corpus in memory, whereas the reduced lexicon of the
class-based approach means the algorithm runs in roughly
constant space. Where time or computation are at a pre-
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Figure 7: Average number of tokens per sentence, as a func-
tion of selected corpus size.

mium, the cluster-based version is the best and most efficient
version of cross-entropy difference. Where the resources are
available, the cynical selection method is more accurate.
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Abstract
We present CHARCUT, a character-based machine transla-
tion evaluation metric derived from a human-targeted seg-
ment difference visualisation algorithm. It combines an it-
erative search for longest common substrings between the
candidate and the reference translation with a simple length-
based threshold, enabling loose differences that limit noisy
character matches. Its main advantage is to produce scores
that directly reflect human-readable string differences, mak-
ing it a useful support tool for the manual analysis of MT
output and its display to end users. Experiments on WMT16
metrics task data show that it is on par with the best “un-
trained” metrics in terms of correlation with human judge-
ment, well above BLEU and TER baselines, on both system
and segment tasks.

1. Introduction
A large number of metrics have been proposed in the
past years for the task of objective evaluation of Ma-
chine Translation. To this day, trained or combined met-
rics (e.g. BEER [1], DPMFCOMB [2], UOW.REVAL [3],
COBALTF [4], among others), generally attain top results in
terms of average correlation with human judgement, as was
concluded in recent WMT conferences [5, 6].

On the other hand, endogenous metrics present the
advantage of versatility, the most widely used remaining
BLEU [7] and TER [8]. Such versatility is crucial in envi-
ronments where MT systems are built and tuned to support
numerous languages, some of which having little resources
available.

Among those metrics, character-based ones have re-
ceived more and more interest, starting from BLEU in char-
acters [9, 10] to the recent CHRF [11] and CharacTER [12].
Operating at the character level is all the more important as
MT systems working at a sub-word level are getting more
widely used, e.g. with segmentation schemes like Byte Pair
Encoding in Neural MT [13]. Since character-based met-
rics can implicitly account for sub-word linguistic phenom-
ena, they have shown to correlate much better with human
judgements than BLEU and TER—sometimes by tremen-

dous margins [5, 6]. Nowadays, such metrics seem to be
safe for use as drop-in replacements for BLEU.

Another key aspect of MT evaluation is the display of MT
output and its comparison with human references. Highlight-
ing differences between a candidate and a reference transla-
tion is a standard feature of many translation interfaces (e.g.
MateCat’s edit log [14] or SDL Studio’s SDLXLIFF Com-
pare1). Basically, any string comparison tool operating at a
sub-segment level could be used to that end. The potential
associated scores, however, typically simple word or charac-
ter match percentages, may not reflect all aspects expected
from a MT metric. One could just replace it with another
metric, but inconsistencies between score and visible differ-
ences would ensue [15], which might be confusing for non-
specialists. Advanced analysis environments proposing mul-
tiple measures along with word-based highlighting, such as
Asiya [16] or MT-ComparEval [17], among others, are thus
aimed at MT researchers rather than end users.

Some metrics allow to naturally derive user-friendly vi-
sual correspondences between candidate and reference trans-
lations. This is typically the case of word alignment based
metrics (e.g. TER or METEOR [18]), as opposed to those
based e.g. on overlapping n-grams (such as BLEU or CHRF),
or character-based approaches, which are often subject to
noise [12].

We propose an approach that benefits from fine character-
based differences while getting rid of their main drawback,
namely noise. Initially designed as a mean for displaying dif-
ferences to end users, it is also a full-fledged MT evaluation
metric, as a score can be directly inferred from those human-
targeted differences. In this view, a good metric is only the
consequence of a good visual representation.

This paper is organized as follows: Section 2 describes
how user perception of similarities led to the design of our
metric; Section 3 builds up on those observations to describe
the method in details; Section 4 evaluates it in terms of corre-
lation with human judgements; and Section 5 concludes this
work.

1http://appstore.sdl.com/app/sdlxliff-compare/
89/
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2. Defining noticeable similarities
From a translator’s point of view, a useful MT output is one
that requires little time to comprehend and edit in order to
turn it into a quality translation. When the MT contains too
many mistakes, it is faster to rewrite a new translation from
scratch than to attempt to correct it [15, 19].

A similar process takes place when humans compare two
segments. No matter how many common substrings there
are, they have no interest if they cannot be identified by the
user due to their being lost in a flow of differences. As noted
by Wang et al. [12], character-based comparisons typically
suffer from noisy matches on languages using alphabets, be-
cause letters tend to be repeated frequently. Consider for in-
stance the following segment pair taken from WMT16 eval-
uations (C denotes the candidate segment, R the reference):

C: It was also remarkable for personal reasons.
R: It was noteworthy because of personal reasons.

The strings in bold are likely to look like “atomic” re-
placements for most human eyes. Yet they have characters in
common. Indeed, a longest common subsequence between
the two strings in bold could be oerbe f (spaces have the
same status as any other character), underlined below:

C: also remarkable for
R: noteworthy because of

Not only would highlighting those prove useless to the
user, but it would also direct the eye focus onto meaningless
pieces of strings that would go naturally unnoticed without
highlighting. It gets even worse when taking shifts of isolated
characters into account, which is precisely why CharacTER
only considers shifts of words. Note that in this particular ex-
ample, word-based differences would yield much more sat-
isfying results. But those are generally too coarse in the gen-
eral case, especially when words differ only by e.g. a sin-
gle ending, or when dealing with morphologically rich lan-
guages.

We propose a simple approach to account for sub-
word differences, while showing only meaningful character
matches to the user. In order to keep comparisons intelligi-
ble, we reduce the number of highlighted substrings (be they
matches or differences) within segments by allowing loose
differences, i.e. differences that may still contain a few com-
mon characters. To this end, we rely on standard string dif-
ference operations, with the addition of a single constraint:
only substrings longer than a given threshold are considered
for matching. In our experiments (Sec. 4), we have found
that the best value is generally around 3 characters for Eu-
ropean languages, and manual investigations suggest that an
optimum would be 1 or 2 characters for Chinese, which is in
line with the findings of Li et al. [10]. This single constraint
significantly reduces the amount of displayed information,
helping the user focus more on meaningful differences.

To our knowledge, this approach was first used as a simi-
larity measure by [20] in a clinical context for patient record

matching. More recently, it was successfully applied to to-
ponym matching [21]. It also presents similarities with the
more complex MUMmer, a genome alignment system first
introduced in [22], where what we call loose differences are
the counterpart of what is known in bioinformatics as “highly
polymorphic regions,” i.e. short regions of DNA that have
undergone many mutations.

3. Method description
CHARCUT consists of three phases:

1. an iterative search for longest common substrings be-
tween the candidate and the reference translations;

2. the identification of string shifts;

3. a scoring phase based on the lengths of remaining dif-
ferences.

3.1. Iterative segmentation algorithm

In the first phase, we identify a set of non-overlapping
matches by applying an iterative search for the longest com-
mon substring (hereafter LCSubstr2) between a candidate C0

and a reference R0, and cutting off this LCSubstr from both
segments:

Cn+1 = Cn − LCSubstr(Cn, Rn)
Rn+1 = Rn − LCSubstr(Cn, Rn)

(1)

When several LCSubstr’s are possible (same length), the
leftmost one in Cn is processed first, and is paired with the
leftmost corresponding match in Rn. A LCSubstr removed
is replaced with a (zero-length) hard boundary that subse-
quent LCSubstr’s cannot cross. We iterate until the length of
LCSubstr(Cn, Rn), which monotonously decreases at each
step, is below a certain threshold (typically around 3 charac-
ters).

Our first investigations have revealed that pure character-
based matching, treating spaces as any other character, could
lead to misinformed segmentations in presence of shifts of
words with identical prefixes or suffixes (see Fig. 1 for an
example). For this reason, we consider only a subset of all
possible substrings of C0 and R0 when searching for the LC-
Substr, by considering only those that match any of the three
following regular expressions:

• \W*\w+\W* (intra-word substring, does not span
multiple words);

• \W*\b.+\b\W* (inter-word substring, stops at
word boundaries or non-word characters);

• \W+ (run of non-word characters).

2Contrary to the Longest Common Subsequence (LCS), the LCSubstr is
exclusively made up of adjacent characters.
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C: [. . . ] der Europäischen Gemeinsamen Strategie zur Unterstützung Palästinas [. . . ]

R: [. . . ] der Gemeinsamen Europäischen Strategie zur Unterstützung Palästinas [. . . ]

Figure 1: A common pitfall where the raw character based longest-first approach can lead to a counter-intuitive segmentation.
The first LCSubstr is underlined. Because the two swapped German words Europäischen and Gemeinsamen share the same
ending, this ending has been integrated into the LCSubstr, preventing the more natural full word matches. We circumvent this
issue by making our algorithm aware of word separators.

n Cn Rn LCSubstr(Cn, Rn) length

0
Before the game, it had arrived
at the stadium to riots.

Before the match there was a riot
in the stadium. the stadium 12

1 Before the game, it had arrived at| to riots. Before the match there was a riot in|. Before the 11

2 |game, it had arrived at| to riots. |match there was a riot in|. riot 5

3 |game, it had arrived at| to|s. |match there was a| in|. at 2

Figure 2: Example of iterative search for longest common substrings (LCSubstr). At each step, the LCSubstr (underlined) is
cut off and replaced with a zero-length boundary (noted with a pipe character “|”) that subsequent LCSubstr’s may not cross.
The process stops when the length of the LCSubstr is below a given threshold—here, 3 characters, preventing smaller common
substrings, starting with at at step 3, to be considered as matches. The longest common suffix (single full stop) is eventually
added to the list of LCSubstr’s, while the longest common prefix was already extracted as a regular LCSubstr.

C0: Before the game, it had arrived at the stadium to riots.

R0: Before the match there was a riot in the stadium.

Figure 3: Segmentation resulting from the iterative search
of Fig. 2. Matches (= LCSubstr’s) are underlined, and the
remaining substrings are loose differences. Here, those dif-
ferences still have around 68% of characters in common (16),
while no meaningful lexical correspondences are visible: the
length-based threshold has successfully prevented a large
amount of noise that would otherwise make the output un-
readable.

This leads to a mix of word- and character-based LCSub-
str’s which we felt more natural than pure character-based
ones in our experiments. In the case of scripts without word
separators such as Chinese, most LCsubstr’s match the first
expression.

Eventually, we also add the longest common prefix and
the longest common suffix between C0 and R0 to the list
of LCSubstr’s, independently of their length, providing they
match the second or third regular expression and were not
already extracted as a regular LCSubstr. This addition had
almost no impact in terms of correlation with human judge-
ment in our experiments, but it improves highlighting by fix-
ing frequent cases of true negatives, such as final punctua-
tions or segments shorter than the minimum match size, that
most users would expect to be considered as matches.

Then:

• the set of LCSubstr’s extracted up to this point (includ-
ing longest common prefix and suffix) are matches;

• the remaining strings, i.e. the last computed Cn and
Rn, are loose differences.

Figures 2 and 3 give an example. Contrary to edit dis-
tances, our approach does not yield a minimal sequence of
operations that would turn C0 into R0; instead, it seeks to
lower the number of matches and differences, hence the user
reading effort.

3.2. Identifying string shifts

CHARCUT naturally handles string shifts, as the position
change between the stadium and riot in Fig. 3 illus-
trates. For the purpose of highlighting and scoring, we mark
the shortest one ( riot) as a shift, and the other one as a
regular match.

More generally, when faced with multiple alternative
shifts, we identify the longest common subsequence, in total
number of characters, between the sequence of LCSubstr’s
from C0 (hereafter noted Cmatch) and that from R0 (hereafter
Rmatch), and any LCSubstr left out is marked as a shift. The
two input sequences have exactly the same tokens, but in a
different order (here 4 tokens = 4 LCSubstr’s, delimited by a
pipe “|”):

Cmatch = Before the | the stadium| riot|.
Rmatch = Before the | riot| the stadium|.

The longest common subsequence has three to-
kens: Before the | the stadium|. for a total of
12+11+1=24 characters. Those tokens will be referred to as
regular matches in the following. Tokens left out (here, the
single token riot) are marked as shifts, and will be scored
and highlighted accordingly later on. Note that our definition
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of the longest common subsequence deviates from the gen-
eral LCS definition, since we do not base its computation on
the number of tokens, but on the sum of their lengths.

3.3. Scoring scheme

The result of the previous phases is a segmentation of the in-
put segments in three types of substrings: regular matches,
shifts, and loose differences. Loose differences include dele-
tions (from the candidate segment) and insertions (into the
reference segment). We derive a score from those substrings
by assigning a cost to each character of the candidate and
reference segments:

• characters from regular matches have no cost;

• shifted, deleted, and inserted characters have a cost
of 1 (shifted characters are counted only once although
they appear in both segments).

We do not consider the combination deletion + inser-
tion = replacement as a single operation because, by defi-
nition, there is no correspondence inside loose differences.
While this combination appears natural when dealing with
word units, it makes much less sense on characters, as iden-
tification of replacement pairs within differences would be
arbitrary, especially if their lengths highly differ between the
candidate and the reference.

While CharacTER assigns a shift cost equal to the av-
erage word length of the shifted phrase, we use the total
number of shifted characters instead, thus keeping the com-
putation rather straightforward. There is little risk of over-
evaluating the cost of shifts because, by definition (Sec. 3.2),
their length is minimal.

In our setting, the cost of post-edition is thus the to-
tal number of edited characters. An intuitive normalization
scheme would be to divide this number by the total length of
the candidate and reference segments in order to produce a
score between 0 and 1:

scoreorig =
#deletions +#insertions +#shifts

|C0|+ |R0|
(2)

However, following Wang et al. [12], we tried using only
the length of the candidate, and we could confirm that it
generally leads to higher correlation with human judgements
(see experiments in next section). We thus consider also the
following variant, where we divide by twice the candidate
length instead, and limit the final score to 1 in case the num-
ber of edited characters exceeds the denominator:

scoreC = min

(
1,

#deletions +#insertions +#shifts
2× |C0|

)
(3)

The lower the scores, the better. A score of zero means
that the candidate and reference segments are identical. In
the example of Fig. 3, we obtain scoreorig = 27+21+5

56+49 ' 0.50

and scoreC = 27+21+5
2×56 ' 0.47.

4. Experiments
4.1. Task description

We evaluate CHARCUT on the WMT16 system- and
segment-level news metrics tasks [6], using the official eval-
uation scripts. We report results obtained with the “direct
assessment” golden truth (hereafter DA), as it was concluded
in WMT16 that it was more reliable than relative ranking,
and it was also chosen as the official human evaluation at
WMT17. Under this evaluation scheme, humans evaluate
the adequacy of translations on an absolute scale in isolation
from other translations, and the correlation with automatic
scores is measured by means of absolute Pearson correla-
tion coefficient. The data consist of news texts from Czech,
Finnish, German, Romanian, and Turkish, into English, plus
the Russian-English language pair in both directions.3

In addition, we report results of the segment-level tasks
under the “HUMEseg” evaluation scheme [23], which was
also an official human evaluation of WMT17. Similarly to
DA, scores are compared using the Pearson correlation coef-
ficient, but with human judgements of semantic nodes aggre-
gated over each sentence rather than single absolute scores.
The data used for those tracks are texts from the medical do-
main from English into Czech, German, Romanian, and Pol-
ish.

4.2. Optimizing for correlation with human judgement

Figure 4 reports the average Pearson correlations between
human judgements and various set-ups of CHARCUT. On
average, the correlations obtained with the scoreC scheme
(eq. 3) is greater than that obtained with scoreorig (eq. 2)
by 0.01, which confirms the findings of Wang et al. [12].

Although in practice varying the minimum match size
leads to visually very different outputs, especially with low
values, they seem to have a limited impact on correlations
with human judgements: the average range of the absolute
Pearson coefficient (difference between maximum and min-
imum) is 0.01. The system- and segment-level DA graphs
show curves that tend to increase slightly then decrease, with
a maximum correlation when the minimum match size equals
2 or 3 characters. This is consistent with the sense we get
from the corresponding highlighting, which “looks right” to
the eye—too small values leading to noisy matches, and too
high values to silence.

On the contrary, the monotonously decreasing curves of
the segment-level HUME graph suggest that smaller mini-
mum match sizes would be better, which is in contradiction
with the other results. We will nevertheless restrict our fol-
lowing experiments to a minimum match size of 3 characters,
as it constitutes a good compromise between the above three

3 The DA evaluations of WMT17 cover more diverse target languages,
in particular Chinese, which constitutes a good test for character based ap-
proaches, but the official evaluation scripts were not publicly released at the
time this paper was written. For consistency, we therefore chose to stick to
the WMT16 evaluations.
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Figure 4: Average correlations between CHARCUT scores
and human judgements on WMT16’s metrics tasks. In or-
dinates, the absolute Pearson correlation coefficient. In ab-
scissae, the minimum match size in characters (length-based
threshold). The reported numbers are averages over all lan-
guage pairs. Normalizing with the candidate segment length
only (scoreC) consistently outperforms using both the candi-
date and reference lengths (scoreorig).

evaluations and our manual investigations, in which we ob-
served that a 2 character threshold still produced too many
noisy matches.

4.3. Comparison with other metrics

Table 1 compares CHARCUT with metrics that took part in
the WMT16 evaluations. For conciseness, we only report
average correlations over all language pairs. The rankings
differ from the official WMT16 results since we chose to fo-

cus on the Direct Assessment and HUME evaluations, while
the official evaluations were based on Relative Ranking. The
reported results make therefore no pretence to (re-)define the
“best metrics;” rather, they are only meant to show that the
scores produced by CHARCUT, which are first and foremost
intended to be presented to users along with segment high-
lighting, are globally as good as other recent metrics, well
above well-known baselines.

In these experiments, CHARCUT uses the scoreC normal-
ization scheme and a minimum match size of 3-characters.
We also report additional correlations obtained with the Lev-
enshtein distance, normalized with the sum of the source and
target segment lengths, to serve as a character-based base-
line; as well as with TER and CharacTER on segment-level
tasks.

Globally, CHARCUT’s results are very close to those
of MPEDA [24], which relies yet on additional training
corpora. Compared with other endogenous metrics (chrF,
wordF, CharacTER, variants of BLEU and TER, Leven-
shtein distance), CHARCUT produces top average correla-
tions on the system- and segment-level DA evaluations, and
is only superseded by chrF on the HUME evaluation. A
fortiori, its correlations are much higher than those of the
BLEU and TER baselines: from +9% relative Pearson corre-
lation (MTEVALBLEU, system-level DA) up to +23% (TER,
segment-level HUME).

Unexpectedly, the simple normalized character-based
Levenshtein distance performs quite well, outperforming
even metrics like BEER and CharacTER on the DA evalu-
ations. CHARCUT nevertheless represents a consistent im-
provement over it, by +0.03 absolute Pearson correlation on
average.

4.4. Processing time

We used a random sample of 10,000 segment pairs from
WMT16 to measure the speed of CHARCUT. The average
reference length in this sample was 113 characters. On a
2.8 GHz processor, our Python implementation could pro-
cess 260 segment pairs per second, using a minimum match
size of 3 characters, which is faster than required in most sit-
uations. For comparison, CharacTER and CHRF, also Python
implementations, could process respectively 54 and 600 seg-
ment pairs per second with default settings on the same ma-
chine.

5. Conclusion
We have presented CHARCUT, a character-based machine
translation evaluation metric. It relies on loose differences,
residuals from an iterative search for longest common sub-
strings. Initially designed for displaying differences between
reference and candidate segments to end users, it also pro-
duces scores that should look consistent to most, since they
directly reflect those differences. In this view, good correla-
tion with human judgement is only a consequence of a good
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Table 1: Comparison of CHARCUT’s performances with metrics that took part in the system-level DA, segment-level DA, and
segment-level HUME tasks of WMT16. We report the average Pearson correlation coefficients over all language pairs. Averages
within brackets refer to metrics that did not participate in the English-to-Russian evaluation, so they are based on one less figure.
Asterisks indicate our own runs; all other averages are based on figures from [6]. CHARCUT is globally on par with the best
metrics in those evaluations.

system-level DA segment-level DA segment-level HUME

Metric Avg. corr. ± stddev.

UOW.REVAL (0.972 ± 0.013)
MPEDA 0.945 ± 0.044
*CHARCUT 0.942 ± 0.037
CHRF2 0.934 ± 0.038
CHRF3 0.934 ± 0.035
*Lev. distance 0.930 ± 0.049
BEER 0.928 ± 0.054
CHRF1 0.927 ± 0.051
CHARACTER 0.922 ± 0.055
MTEVALNIST 0.886 ± 0.068
MTEVALBLEU 0.867 ± 0.060
MOSESCDER 0.861 ± 0.061
MOSESTER 0.851 ± 0.061
MOSESPER 0.842 ± 0.096
WORDF3 0.836 ± 0.069
WORDF2 0.836 ± 0.069
WORDF1 0.831 ± 0.071
MOSESWER 0.812 ± 0.099
MOSESBLEU 0.810 ± 0.082

Metric Avg. corr. ± stddev.

DPMFCOMB (0.633 ± 0.048)
METRICS-F (0.631 ± 0.049)
COBALT-F. (0.617 ± 0.040)
MPEDA 0.584 ± 0.053
*CHARCUT 0.582 ± 0.076
UPF-COBALT (0.582 ± 0.060)
CHRF3 0.560 ± 0.082
CHRF2 0.559 ± 0.081
*Lev. distance 0.556 ± 0.065
BEER 0.556 ± 0.082
CHRF1 0.548 ± 0.079
*CHARACTER 0.537 ± 0.074
UOW.REVAL 0.530 ± 0.035
WORDF3 0.524 ± 0.055
WORDF2 0.522 ± 0.055
WORDF1 0.514 ± 0.055
SENTBLEU 0.510 ± 0.039
*TER 0.485 ± 0.052
DTED 0.330 ± 0.058

Metric Avg. corr. ± stddev.

CHRF3 0.519 ± 0.096
CHRF2 0.517 ± 0.092
BEER 0.513 ± 0.079
CHRF1 0.503 ± 0.079
MPEDA 0.492 ± 0.073
*CHARCUT 0.483 ± 0.121
WORDF3 0.452 ± 0.092
WORDF2 0.450 ± 0.091
WORDF1 0.439 ± 0.088
*CHARACTER 0.438 ± 0.126
*Lev. distance 0.437 ± 0.109
SENTBLEU 0.401 ± 0.101
*TER 0.394 ± 0.125

visual representation. Experiments on WMT16 metrics tasks
have thus shown that those scores are well correlated with
human judgements, globally on par with other recent met-
rics like CHRF and MPEDA, ahead of BLEU and TER base-
lines by up to 23% relative Pearson correlation in our exper-
iments. It is also language independent and requires no ad-
ditional resource or training. Possible improvements include
better handling of shifts, as CHARCUT is currently unaware
of shift distance; or again automatically correlate the mini-
mum match size with the number of highlighted substrings
in order to keep outputs readable even with very different in-
put segments.

6. Availability

CHARCUT is open source and available at https://
github.com/alardill/CharCut. It consists of a sin-
gle Python script that computes scores and highlights differ-
ences (HTML outputs). Figure 5 shows a sample output.
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