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Data Selection
MT 

System • Use same MT toolkit, 
with better input!

• Outdated: "There's no  
  data like more data."  
 
 
  There's no data like  
       relevant data!
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Data Selection Process
• Compute similarity of 

sentences in pool to 
the task corpus

• Sort pool sentences by 
score

• Select (keep) some

• Build task-specific MT 
system
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• Data selection:
There's no data like relevant data!

10
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Cross-Entropy Difference

• (Sometimes called "Moore-Lewis method") 

• This prefers sentences that both:
• Are like the target task
• Are unlike the pool average.

11
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We only want the relationship between two texts. 
 
We don’t need to model either of them separately.

 

Class-Based Moore-Lewis
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Deriving Intuition

13

From definition of cross-entropy difference:
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Not All Words Are Equal
• Scores depend on word probability ratio.

• Rare word statistics aren't trustworthy 
  (count close to 0)

• Fair words don't affect the score  
 (ratio close to 1)

• Biased words matter the most 
  (ratio close to 0 or very large)

• Move bias information into the corpus!
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Aggregating Statistics
• Bias info alone does not change word statistics

• Need to also take some information out!

• Collapse words-of-a-kind together: 
    
   Replace words with Brown cluster labels  
   (fully unsupervised, for any language)

• [ previously @IWSLT 2015: POS tags ]

15
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Marking Bias Explicitly
• Replace word with its cluster label, 

and add a suffix indicating unigram frequency ratio

• “ozeanen”  —> “862/+” 
    Brown cluster #862, 
    1 order of magnitude more common in the Task

• “…” —>  “3/-“ 
    Brown cluster #3, 
    1 order of magnitude more common in the Pool

16
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Marking Bias Explicitly

• “ozeanen”  —> “862/+” 
    Brown cluster #862, 
    1 order of magnitude more common in the Task

• Now each corpus knows about the other one!

• Bias (ratio) changes for each Task/Pool pair, 
allows for nuance in relationship

17
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Cluster-based Methodology

1. Compute Brown clusters for the corpora

2. Compute vocab statistics and ratios  

3. Transform text  

4. Do cross-entropy difference data selection

5. Put words back in, and carry on! 
18

• Drop-in addition to existing method!
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• Data selection:
There's no data like relevant data!

•  Language difference models: 
    model each corpus relative to the other one

19
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Experimental Setup
• German --> English translation

• Task:  TED,   218  k   lines  (     4 m  tokens )  
Pool:  WMT,  17.6 m  lines  ( 235 m  tokens )

• Vocab (De):  1.1m  
Vocab (En):  900k

• 1,000 Brown clusters x 8 bias labels, 
collapsing lexicon to <  3000 types

20
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In-Domain Perplexity

21

• cluster-based: 
   
-20 ppl  
 
 
 

•   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In-Domain Lexical Coverage

22

• cluster-based: 
 
  -33% oov  
 
 
 

•   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Moore-Lewis Limitations
Cross-entropy difference…

… treats Task and Pool as the opposing ends of a single 
spectrum      “IN = Good, OUT = Bad” 

… Not guaranteed to model nor cover in-domain data. 
LMTASK likes them; this is necessary, but not sufficient.

… No intuition as to how many sentences to select. 
Grid search doesn’t count.

 
23



Data Selection Santamaría + Axelrod IWSLT 2017

Cross-entropy difference…

… treats Task and Pool as the opposing ends of a single 
spectrum      “IN = Good, OUT = Bad” 

… Not guaranteed to model nor cover in-domain data. 
LMTASK likes them; this is necessary, but not sufficient.

… No intuition as to how many sentences to select. 
Grid search doesn’t count.

BUT IT WORKS    —  WHY CHANGE?
24

Moore-Lewis Limitations
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In-Domain Perplexity
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In-Domain Perplexity
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• cluster-based: 
 
  -20 ppl  
 

• cynical: 
 
-30 ppl 
 
…and -66% less data.



Data Selection Santamaría + Axelrod IWSLT 2017

In-Domain Lexical Coverage
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• cluster-based: 
 
  -33% oov  
 

•   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• cluster-based: 
   
  -33% oov  
 

• cynical: 
 
-85% oov  
 
…and -83% less data.

In-Domain Lexical Coverage

28
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Cynical Motivation
Cross-entropy difference…

… treats Task and Pool as the opposing ends of a single 
spectrum      “IN = Good, OUT = Bad” 

… Not guaranteed to model nor cover in-domain data. 
LMTASK likes them; this is necessary, but not sufficient.

… No intuition as to how many sentences to select. 
Grid search doesn’t count.

BUT IT WORKS    —  WHY CHANGE?               …AH.
29



Data Selection Santamaría + Axelrod IWSLT 2017

Cynical Data Selection
• “an incremental greedy selection scheme based on 

relative entropy, which selects a sentence if adding 
it to the already selected set of sentences reduces 
the relative entropy with respect to the in-domain 
data distribution” [Sethy et al, 2006]

• incrementally grow the training corpus  
only based on how useful the data is

• “does it help me now?” 

30
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Cynical Data Selection

• How many bits of information would we learn  
if we added this line to our corpus?

• Only add sentences that can be proven to make 
the model better.

• Pick most informative lines first.

31
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Cynical Selection Process

32

Available (Pool)

Representative (Task) Data

Can it model?
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-1.2   2.3  1.2  -0.6

Cynical Selection Process
Representative (Task) Data

Available (Pool)

score  
and  
sort
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Selected

-1.2   2.3  1.2  -0.6

Cynical Selection Process
Representative (Task) Data
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Can it model?

Cynical Selection Process
Representative (Task) Data

Available (Pool)
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1.2   -0.7  -0.6

Cynical Selection Process
Representative (Task) Data

Available (Pool)

score  
and  
sort
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Selected

1.2   -0.7  -0.6

Cynical Selection Process
Representative (Task) Data

Available (Pool)
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1.2   -0.7  -0.6

Cynical Selection Process
Representative (Task) Data

Available (Pool)

Where does this number 
come from?

What does it mean?
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• Pick any n lines. Is that subset any good?

• See how well they model the task !

• Cross-entropy between subset and the task is: 
 
 
 
 

39

Quantifying Subset Score

Hn(repr) = �
X

v2Vrepr

Crepr(v)

Wrepr
log

Cn(v)

Wn

P(n)  log Q(n)(bits of entropy)
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• After picking n lines, how do we pick line n+1 ?

• Need to score all potential choices.

• We already computed Hn , so  
 
 
 
Decompose as: 
 

40

Inductive Step

Hn+1 = Hn + �H
n!n+1

Hn+1 = Hn + Penalty
n!n+1

+ Gain
n!n+1
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 Greedy Cross-Entropy Delta
[Sethy/Georgiou/Narayanan  2006]
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Penalty Term

• Each word we add increases the penalty for the line

• Bias towards shorter sentences

• Penalty for line decreases over time

log

Wn + wn+1

Wn| {z }
Penalty

All words in line
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Gain Term

• Rewards each word in line that is also in the task

• Bigger reward for higher-probability words

• Bias towards longer sentences

• Gain of line also decreases over time

X

v2Vrepr

Crepr(v)

Wrepr
log

Cn(v)

Cn(v) + cn+1(v)
| {z }

Gain

Only 
relevant 
words
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Selection Criterion

• Computable separately

• Cheap to update

• Approximations are upper bounds:

• Easy to sort

• High precision (no bad lines with good scores)

�H
n!n+1

= Penalty
n!n+1

+ Gain
n!n+1
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Selection Criterion

• Delta H  < 0  
This line adds information (lowers entropy). Select it!

• Delta H > 0  
This sentence makes your model dumber. Leave it!

• Delta H starts < 0, and increases over time. 
Score passes zero when it runs out of useful 
sentences. Ok to stop!

�H
n!n+1

= Penalty
n!n+1

+ Gain
n!n+1
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Naïve Algorithm
• Picking n+1:

• Compute the Delta H score for each sentence 
remaining in AVAIL.

• Sort the sentences in AVAIL by Delta H

• Select sentence with the best (lowest) score.

• Remove it from AVAIL.

• Loop
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Why Not Do It Like That?
• (i.e. “Why wasn’t this done in 2006?”)

• N iterations                                              O(N)

• Each updating WAVAIL words                O(N)  
   and sort N lines to find best           + O(N log N)

• Total:                            = O (N2 + N2 log N)  >  O(N2)

• No thanks! 
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Implementation

• naïve iterative greedy selection:   at least O(N2)

• “Perfect is the enemy of Good”

• What if we just want ‘good’ and not ‘best’ ?

• Doable in O(N log N) 
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Gain
n!n+1

=
X

v2vn+1

Gain
n!n+1

(v)

• Sentence gain score decomposes into word scores:

• Dominated by one or two of the word (type) terms, 
because of Zipfian distribution

Not All Words Are Equal
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“Good Enough”

• What about word with the best gain estimate?

• It will help to eventually add a line with that word.

• We will pick many sentences— 
  no harm in adding now. 
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“Good Enough”

• Pick best sentence containing  
   the word with best gain.

• Might not be best sentence, but is good sentence.

• Reduces # lines to evaluate at each step.
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Lowering Complexity

• N iterations                                     N

• Each updating V words,   
sorting V words to find best        V + V log V

•  Update and sort AVAIL(v’) lines N1/3 + N1/3 log N1/3 

• Total:                                              O( N V log V)
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Squish Lexicon
• Cynical Selection complexity depends on size of V  

• Reduce lexicon with insight from Class-based 
Moore-Lewis

• Focus on words biased towards TASK 
  and away from AVAIL

• Collapse all other words into 5 classes

• Final vocabulary: ~30k words.
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“Tractable Enough”

• Complexity of O(N log N) achievable with reduced 
lexicon and dynamically-sized batching.

• Still super-linear! 
But not terribly (experiments ran in 0.5 - 1 day)

• Also, do not need to run to completion —  
stop when estimated entropy gain stays above 0.
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Algorithm in Practice
• Picking n+1:

• Compute Word Gain Estimate (WGE) for all V

• Sort, then select word v’ with best WGE

• Compute the Delta H score for each sentence in AVAIL(v’) 
    (set of sentences remaining in AVAIL that contain v’)

• Sort AVAIL(v’) by Delta H

• Select sentence with the best (lowest) score.

• Remove it from AVAIL.

• Loop until best Delta H > 0 for all words.
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In-Domain Perplexity

56

• cluster-based: 
  -20 ppl  
 
 
 

• cynical: 
-30 ppl  
…and -66% less data.
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• cluster-based: 
  -33% oov  
 
 
 

• cynical: 
-85% oov  
…and -83% less data.

In-Domain Lexical Coverage

57
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Summary
• Data selection:

There's no data like useful data!

• If you use Moore-Lewis, upgrade to class-based. 
                        Always better, runs on tiny computers.

• Cynical gives same MT results, 
     with much smaller systems 
     and near-perfect coverage. 
                        Always better, runs on big computers.

58
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Thanks!

               https://github.com/amittai/cynical

                     Lucía Santamaría :     lucsan@amazon.com

Cynical Selection available:

(totally open-source, MIT license, Amazon is not responsible for my bugs)

https://github.com/amittai/cynical
mailto:lucsan@amazon.com
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