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Introduction
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• Neural machine translation (NMT) system have 
demonstrated promising results in recent years

The major design question of using neural network structure is 
how to set the meta-parameter values of the network structure 
and training configures

Google’s neural machine 
translation system 
reduced translation errors 
when compared with the 
prior Google translation 
technology



Problems of neural network tuning
• Human tuning (“tuning” refers to meta-parameters search)
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 Tuning by human experts requires a lot of effort

NN’s meta 
parameters
 Learning rate
 # of RNN units
 Dropout ration
etc.



Related work
• Grid search

- A simple method for meta-parameter optimization
-Becomes less tractable as # of parameters increases

• Genetic algorithms(GA), Bayesian optimization(BO)
-Demonstrated success in many practical problems

• In our work, we apply CMA-ES (covariance matrix adaptive 
evolutionary strategy) to NMT

-Previous work shows CMA-ES works to improve ASR system
“ Automatic structure discovery and parameter tuning of  neural 
network language model based on evolution strategy ”,
[Tanaka et al., SLT,2016]
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CMA-ES algorithm
CMA-ES has shown great results in black-box optimization problems
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Intuition
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Intuition
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Intuition
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Multi-objective optimization using Pareto
• Assume that we want to maximize J objectives with respect to jointly

F

• As objectives might conflict with each other
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BLUE and validation time opitimization
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Practical heuristic: Threshold

14

BLEU

Va
lid

at
io

n 
tim

e

• Individual with lower BLEU and smaller validation 
time than an initial system might have higher 
Pareto rank if their validation time is small

• We set a threshold to avoid this problem
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Target NMT system for the tuning

• NMT system 
Nematus: attention-based neural machine translation   
system developed by University of Edinburgh

• Subword preprocessing
-Words with low occurrence frequency are hard to translate

-Using BPE (byte pair encoding) to reduce the number of distinct  
vocabulary items 
-The optimal  # of BPE merge operation is unclear
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Nematus toolkit
• Using an encoder-decoder model similar to the one proposed 

by Bahdanau et al.(2015), but with some implementation 
differences
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Subword translation

Using subword units, like morphemes or phonemes,  can improve 
translation quality  

BPE: an algorithm to generate subword units

# of units in BPE needs to be tuned: affects quality and time
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Single objective
• Only optimize 

translation accuracy

Multi objectives
• Multi objectives means 

optimizing multiple 
objectives jointly, like 
accuracy and 
computational cost
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Accuracy measure : BLEU
(bilingual evaluation understudy)

Computational cost:  the 
translation time

 N-gram based similarity 
measure  between 
translation result and 
reference text 

 The higher the better

𝒐𝒑𝒕𝒊𝒎𝒊𝒛𝒆𝒅 (𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆)

𝒐𝒑𝒕𝒊𝒎𝒊𝒛𝒆𝒅 (𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆)

( 𝒐𝒑𝒕𝒊𝒎𝒊𝒛𝒆𝒅) (𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆)

Two Evolution Experiments



Gene to configuration mapping
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Experimental setup
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Articles Sentences Japanese
words

English 
words

Train 14126 330k 6.09M 5.91M

Dev 15 1166 26.8k 24.3k

Test 15 1160 28.5k 26.7k

 The data comes from Kyoto free translation task (KFTT)
-Wikipedia articles about Kyoto and Japanese culture
-Manually translated into English by NICT

• sentences with less than 1 or more than 40 words were removed

 Both sides are then broken in subword units independently 
using BPE



Evolution setting
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training time 48hours(single),
36 hours(multi)/generation

# of generation 10 in single-obj, 5 in mul-obj
# of individuals 30 

evaluation score BLEU and validation time(seconds)

Computer machine Tsubame 2.5
(GPU:NVIDIA K20X)

Multi-evolution 
threshold(BLEU) 16.5

Language Japanese-English



Training time setting
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• Based on a preliminary experiment, training time is 
limited to 48 hours(single-objective experiment) and 36 
hours(multi-objective experiment)
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Meta-parameters to be tuned
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Item Initial 
value

Mapping function

BPE on source 5000 Exp
BPE on target 5000 Exp
dim of  word embedding 100 Exp

dim of LSTM 400 Exp

alignment regularization 0 abs
learning rate 0.0001 abs
word embedding layer dropout 0.2 abs

hidden layer dropout 0.2 abs
source layer dropout 0.1 abs
target layer dropout 0.1 abs



Experimental process
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Single objective evolution results
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Multi objectives evolution results
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Parameter analysis
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Meta-parameter Initial
value

(a)Single
objective

(b)Multiple
objective

(c)Multipl
e objective

(d)Multiple
-objective

# BPE merge operation 
on Source(bpe_op_src)

5000 5250 5345 5011 5102

# BPE merge operation 
on Target(bpe_op_trg)

5000 6617 4622 5706 5877

dimension of word 
embedding(dim_word)

100 121 333 99 104

dimension of LSTM
units(dim_lstm)

400 496 123 459 430

dev_BLEU 16.48 18.83 17.42 18.04 18.02

dev_computation time 248 264 222 269 241



Range of dimension
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• The distribution of dim_lstm and dim_word in two experiments:

dim of word dim of worddim of LSTM dim of LSTM
(a)Single objective (a)Multi objective
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• There needs to be some more aggressive sampling in order to 
fully explore the meta-parameter space



Range of BPE 
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• The distribution of meta-parameter BPE in two experiments:

bpe_op_src bpe_op_srcbpe_op_trg bpe_op_src

(a)Single objective,BPE (b)Multi objective,BPE
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Conclusion 
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Summary:

• Single-objective experiments succeeded in automatically 
improving the BLEU of MT system significantly

• Multi-objective experiments needs improvement

• Apply CMA-ES to tune NMT meta-parameter, 
reduce human effort

Next work:

• Adjust the setting of multi-objective experiment 


