Neural Machine Translation Training
in a Multidomain Scenario
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Introduction Methodology

In this work, we study domain adaptation for Neural
Machine Translation (NMT) and target the following

ti Train a system by concatenating
questions:

all the available in-domain and
out-of-domain data

What are different ways to combine multiple
domains during a training process?

Concatenation
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Results
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® A concatenated system fine-tuned on the in-domain data achieves the " SETED
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® A concatenated system on all available data results in the most robust
system Arabic-English
e Data selection gives a decent trade-off between translation quality
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Summary Future Work
e We explored several approaches to train NMT systems under multi-domain e We would like to explore domain adaptation under various vocabulary settings;
scenario: Best system is obtained by training system on the entire data and in-domain vocabulary, out-of-domain vocabulary, large general vocabulary
fine-tuning with the in-domain model e Another interesting direction to look at is to explore ways to dynamically adapt
e Data selection is helpful under time constraint scenarios the vocabulary of an already trained model in favor of the in-domain data




