

Neural Machine Translation Training in a Multidomain Scenario

Hassan Sajjad, Nadir Durrani, Fahim Dalvi, Yonatan Belinkov¹, Stephan Vogel QCRI, Doha, Qatar ¹MIT CSAIL, Cambridge, MA, USA

Introduction

In this work, we study domain adaptation for Neural Machine Translation (NMT) and target the following questions:

- What are different ways to combine multiple domains during a training process?
- How to build an optimal in-domain system?
- How to obtain a robust system that works best for several domains?
- What is the best strategy under time constraints?

Data and Experimental Setup

- Arabic-English corpora NMT settings
 - o TED (in-domain)
- o UN
- OPUS
- German-English corpora
- o TED (in-domain)
- o CC

- - Nematus toolkit
- 2-layered bidirectional
- LSTM with attention
- Embedding size 512
- o Hidden layer size 1000
- o BPE 50,000
- Vocabulary of TED talks only

Results

Our Findings

- A concatenated system fine-tuned on the in-domain data achieves the most optimal in-domain system
- Model stacking works best when starting from the furthest domain, fine-tuning on closer domains and then finally fine-tuning on the in-domain data

	ALL	Arabic-Eng OD→TED	giish UN→OPUS→TED		
tst13	36.1	37.9	36.8		
tst14	30.2	32.1	31.2		
avg.	33.2	35.0	34.0		
$\begin{array}{ccc} & \textbf{German-English} \\ \text{ALL} & \text{OD} {\rightarrow} \text{TED} & \text{EP} {\rightarrow} \text{CC} {\rightarrow} \text{TED} \end{array}$					
tst13	35.7	38.1	36.8		
tst14	30.8	32.8	31.7		
avg.	33.3	35.4	34.3		

- A concatenated system on all available data results in the most robust
- Data selection gives a decent trade-off between translation quality and training time

	Arabic-English		German-English	
	ALL	Selected	ALL	Selected
tst13	36.1	32.7	35.7	34.1
tst14	30.2	27.8	30.8	29.9
avg.	33.2	30.3	33.3	32.0

• Weighted ensemble is helpful when several individual models have been already trained and there is no time for retraining/fine-tuning

Arabic-English					
	OPUS	ALL	ENS_b	ENS_w	
tst13	32.2	36.1	31.9	34.3	
tst14	27.3	30.2	25.8	28.6	
avg.	29.7	33.2	28.9	31.5	

German-English

Arabic-English

Summary

- We explored several approaches to train NMT systems under multi-domain scenario: Best system is obtained by training system on the entire data and fine-tuning with the in-domain model
- Data selection is helpful under time constraint scenarios

Future Work

- We would like to explore domain adaptation under various vocabulary settings; in-domain vocabulary, out-of-domain vocabulary, large general vocabulary
- Another interesting direction to look at is to explore ways to dynamically adapt the vocabulary of an already trained model in favor of the in-domain data